
09/02/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Mon, Feb 11
◦ Family Day — no class

 Final Exam Date (preliminary)
◦ Sat, April 13 — 7:00-10:00 pm

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 2
◦ Due Feb 28
◦ Reverse engineering and program understanding

 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (Unix gawk)

◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Midterm
 Thu, Feb 14
◦ In class, closed books, closed notes
◦ All lecture and lab materials covered so far including today

 Topics
◦ Definitions: Software evolution, software maintenance, …
◦ Software complexity
◦ Autonomic systems: autonomic element, autonomic

manager, MAPE-K loop, autonomic reference architecture,
control loop

◦ ULS systems: characteristics, ULS book, web as an
example, city as an example, …

◦ Self-adaptive and self-managing systems

3

Reading assignments
 Chikofsky, Cross: Reverse Engineering and Design

Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=43044

 Kienle, Müller: Rigi—An Environment for Software
Reverse Engineering, Exploration, Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr. 2010.
http://www.sciencedirect.com/science/article/pii/S016764230900149X

 Müller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.
http://dl.acm.org/citation.cfm?id=336526

4

Scale Changes Everything
 Characteristics of ULS systems arise because of their

scale
◦ Decentralization

◦ Inherently conflicting, unknowable, and diverse requirements

◦ Continuous evolution and deployment

◦ Heterogeneous, inconsistent, and changing elements

◦ Erosion of the people/system boundary

◦ Normal failures

◦ New paradigms for acquisition and policy

5

These characteristics may appear in today’s systems,
but in ULS systems they dominate.

These characteristics undermine the assumptions
that underlie today’s software engineering approaches.

Change of Perspective
 From satisfaction of requirements through

traditional, top-down engineering

 To satisfaction of requirements by regulation of
complex, decentralized systems

6

With adaptive systems
and feedback loops 

The system shall do this
… but it may do this …
as long as it does this …

How?

09/02/2013

2

We Need to Think
Socio-Technical Ecosystems
 Socio-technical ecosystems include people, organizations,

and technologies at all levels with significant and often
competing interdependencies.

 In such systems there is

◦ Competition for resources

◦ Organizations and participants responsible for setting policies

◦ Organizations and participants responsible for producing ULS
systems

◦ Need for local and global indicators of health that will trigger
necessary changes in policies and in element and system
behavior

7

Realization of a
Dynamic Architecture
 Feedback control system with

disturbance and noise input

8

Hellerstein, Diao, Parekh, Tilbury: Feedback Control of
Computing Systems. John Wiley & Sons (2004)

ULS Systems vs.
Today’s Approaches

ULS Characteristics Today’s assumptions

Decentralized control
All conflicts must be resolved and resolved
centrally and uniformly.

Inherently conflicting,
unknowable, and diverse
requirements

Requirements can be known in advance and
change slowly. Trade-off decisions will be stable.

Continuous evolution and
deployment

System improvements are introduced
at discrete intervals.

Heterogeneous, inconsistent,
and changing elements

Effect of a change can be predicted sufficiently
well. Configuration information is accurate and
can be tightly controlled. Components and users
are fairly homogeneous.

9

ULS Systems vs.
Today’s Approaches

ULS Characteristics Today’s assumptions

Erosion of the people/system
boundary

People are just users of the system.
Collective behavior of people is not of
interest. Social interactions are not relevant.

Failures are normal
Failures will occur infrequently.
Defects can be removed.

New paradigms for acquisition
and policy

A prime contractor is responsible for system
development, operation, and evolution (e.g.,
open source, community development of data
and code)

10

ULS Challenges
 The ULS book describes challenges in

three broad areas:
◦ Design and evolution

◦ Orchestration and control
◦ Monitoring and assessment

11
Chapter 3 in ULS Book

Web as Context for the
Discussing ULS Challenges

 Assume the web as a ULS system
 Given the web as context, what are the

implications for each of the challenges listed
on the next nine slides?

 Which challenges are difficult or
easy to resolve within the web context?

12
Good midterm question

09/02/2013

3

ULS Challenges
 The ULS book describes challenges in

three broad areas:
◦ Design and evolution

◦ Orchestration and control
◦ Monitoring and assessment

13
Chapter 3 in ULS Book

Specific Challenges in ULS
System Monitoring and Assessment

 The effectiveness of ULS system design, operation,
evolution, orchestration, and control has to be
evaluated.

 There must be an ability to monitor and assess ULS
system state, behavior, and overall health and well being.

 Challenges include
◦ Defining indicators

◦ Understanding why indicators change

◦ Prioritizing the indicators

◦ Handling change and imperfect information

◦ Gauging the human elements

14

Design and evolution
Orchestration and control
Monitoring and assessment

Specific Challenges in ULS
System Monitoring and Assessment

 Defining indicators
◦ What system-wide, end-to-end, and local quality-of-service

indicators are relevant to meeting user needs and ensuring the
long-term viability of the ULS system?

 Understanding why indicators change
◦ What adjustments or changes to system elements and

interconnections will improve or degrade these indicators?

 Prioritizing the indicators
◦ Which indicators should be examined under what conditions?

◦ Are indicators ordered by generality?
 General overall health reading versus specialized particular diagnostics

15

Design and evolution
Orchestration and control
Monitoring and assessment

Specific Challenges in ULS
System Monitoring and Assessment

 Handling change and imperfect information
◦ How do the monitoring and assessment processes handle

continual changes to components, services, usage, or
connectivity?

◦ Note that imperfect information can be inaccurate, stale, or
imprecise.

 Gauging the human elements
◦ What are the indicators of the health and performance of the

people, business, and organizational elements of the ULS system?

16

Design and evolution
Orchestration and control
Monitoring and assessment

Unprecedented Levels
of Monitoring

 To be able to observe and possibly orchestrate
the continuous evolution of software systems in
a complex and changing environment, we need
to push the monitoring of evolving systems to
unprecedented levels.

17

Run-Time Check
Monitors

 Monitor assertions and invariants
 Monitor frequency of raised exceptions
 Continually measure test coverage
 Data structure load balancing
 Buffer overflows, intrusion
 Memory leaks
 Checking liveness properties

18

09/02/2013

4

Satisfaction of
Requirements

 Perform critical regression tests regularly to
observe satisfaction of requirements

 Perform V&V operations (transformations)
regularly to ascertain V&V properties

 How to monitor functional and non-functional
requirements when the environment evolves?

19

Monitor, Assess, and
Manage System Properties
 Govern and enforce rules and regulations
 Monitor compliance
 Assess whether services are used properly
 Monitor and build user trust incrementally
 Manage tradeoffs
 Recognizing normal and exceptional behaviour
 Assess and maintain quality of service (QoS)
 Monitor service level agreements (SLAs)
 Assess and monitor non-functional

requirements

20

ULS
Systems

Self-
Managing/
Autonomic

Systems

Self-
Adaptive
Systems

Related Systems

21

ULS
Systems

Self-
Managing/
Autonomic

Systems

Self-
Adaptive
Systems

Synergy Among Related Systems

22

ULS
Systems

Self-
Managing/
Autonomic

Systems

Self-
Adaptive
Systems

Continuous Evolution Problems

23Complexity Problems Adaption Problems

Related Problems Synergy
Among
Related

Problems

What did you learn this week?
 Context Management and Self-Adaptivity for

Situation-Aware Smart Software Systems
Norha M. Villegas

 Version control systems
Pratik Jain

 2-3 slides

24

