Welcome to SENG 371
. Software Evolution
~ Spring 2013
A Core Course of the BSEng Program
Hausi A. Miiller, PhD PEng
Professor, Department of Computer Science

Associate Dean Research, Faculty of Engineering
University of Victoria

28/02/2013

Announcements

¢ Marking
° Midterm will be returned on Thu in class
Al graded
Thu office hours reserved for marking questions —1:30-2:30 ECS 660
» Course website

= Lecture notes posted

o Lab slides and activities are posted
¢ Assignment 2

© Due March || — revised

Reverse engineering and program understanding
Part |—Summarize three papers
Part Il—Define terms
Part Ill—Reverse engineer a C program (gawk)
< Cite your sources
Submit by e-mail to

Reading assignments

Chikofsky, Cross: Reverse Engineering and Design
Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)

Kienle, Miiller: Rigi—An Environment for Software
Reverse Engineering, Exploration,Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier,Apr. 2010.

Miiller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.

Lehman and Belady’s
System Classification

e S-type programs

o Can be specified formally.
¢ P-type programs

> Cannot be specified.

> An iterative process is needed to find a working
solution.

¢ E-type programs

> Are embedded in the real world and become part of
it, thereby changing the real world.

° This leads to a feedback system where the program
and its environment evolve in concert.

IBM OS360/370 Case Studies

¢ The laws of software evolution were originally based on
observations regarding the evolution of IBM's OS/360
and OS/370.

¢ The laws were not presented as laws of nature, but
rather as general observations that are expected to
hold for all E-type systems, regardless of specific
programming or management practices.

http://en.wikipedia.org/wiki/Meir_M._Lehman
http://www.doc.ic.ac.uk/~mml/

Lehman, M. M.: On Understanding Laws, Evolution, and Conservation in the
Large-Program Life Cycle, Journal of Systems and Software 1:213-221 (1980)

Laws of software evolution

I. Law of Continuing Change (1974)

o “E-type systems must be continually adapted or they become
progressively less satisfactory.”

o Software which is used in a real-world environment must change
or become less and less useful in that environment.

2. Law of Increasing Complexity (1974)

o “As an E-type system evolves its complexity increases unless
work is done to maintain or reduce it.”

° As an evolving program changes, its structure becomes more

complex, unless active efforts are made to avoid this
phenomenon.

Laws of software evolution ...

3. Law of Self Regulation (1978)

o “E-type system evolution process is self regulating with

distribution of product and process measures close to normal.”

o System attributes such as size, time between releases, and the

number of reported errors are approximately invariant for each

system release.
4. Law of Conservation of Organisational Stability

° “The average effective global activity rate in an evolving E-type
system is invariant over product lifetime.”

o Over a program’s lifetime, its rate of development is approximately

constant and independent of the resources devoted to system
development.

28/02/2013

Laws of software evolution ...

5. Law of Conservation of Familiarity (1978)

e “As an E-type system evolves all associated with it, developers,
sales personnel, users, for example, must maintain mastery of its
content and behaviour to achieve satisfactory evolution.
Excessive growth diminishes that mastery.”

Over the lifetime of a system, the incremental system change in
each release is approximately constant.

The average incremental growth of systems tends to remain
constant or decline over time.

6. Law of Continuing Growth (1991)

“The functional content of E-type systems must be continually

increased to maintain user satisfaction over their lifetime.”

> Functional capability must increase over the lifetime of a system
to maintain user satisfaction.

Laws of software evolution ...
7. Law Declining Quality (1996)

they are rigorously maintained and adapted to operational
environment changes.”

8. Law of Feedback System (1996)

“E-type evolution processes constitute multi-level, multi-loop,
multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base”

systems.

“The quality of E-type systems will appear to be declining unless

Unless rigorously adapted, quality will appear to decline over time.

Evolution systems are multi-level, multi-agent, multi-loop feedback

Laws of software evolution ...

e Lehman’s Fifth Law of Software Evolution
o “Over the lifetime of a system, the incremental system

change in each release is approximately constant.”

* What can we say about the complexity of the
software systems developed over the past 50
years?
> Constant?

° Increase?

http://en.wikipedia.org/wiki/Lehman's_laws_of_software_evolution

Seven basic questions...[Erdos/Sneed]

A maintenance programmer must ask to be able to maintain
programs that are only partially understood:

I. Where is a particular subroutine or procedure invoked?

2. What are the arguments and results of a particular
function?

Where is a particular variable set, used or queried?
Where is a particular variable declared?

Where is a particular data object accessed, i.e. created,
read, updated, or deleted?

7. What are the inputs and outputs of a particular module?

o U oA W

What tools do you use to answer these questions?

How does the flow of control reach a particular location?

Learning objectives

» Understand differences between reverse
engineering, forward engineering and
reengineering

Learn the concepts of design discovery/recovery
and re-documentation

Discuss the application of reverse engineering
techniques to software maintenance problems

Understand the weaknesses in reverse
engineering techniques

Learn about different tools to support reverse
engineering

Software reverse engineering

e Def. A two-step process
o Information extraction
° Information abstraction
e Def. A three-step process [Tilley95]
° Information gathering
= Knowledge organization
° Information navigation, analysis, and presentation
¢ Def. Analyzing subject system [CC90]
© to identify its current components and their dependencies

° to extract and create system abstractions and design
information

¢ The subject system is not altered; however, additional
knowledge about the system is produced

28/02/2013

