
28/02/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Marking
◦ Midterm will be returned on Thu in class
◦ A1 graded
◦ Thu office hours reserved for marking questions —1:30-2:30 ECS 660

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 2
◦ Due March 11 — revised
◦ Reverse engineering and program understanding

 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (gawk)

◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Reading assignments
 Chikofsky, Cross: Reverse Engineering and Design

Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=43044

 Kienle, Müller: Rigi—An Environment for Software
Reverse Engineering, Exploration, Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr. 2010.
http://www.sciencedirect.com/science/article/pii/S016764230900149X

 Müller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.
http://dl.acm.org/citation.cfm?id=336526

3

Lehman and Belady’s
System Classification
 S-type programs
◦ Can be specified formally.

 P-type programs
◦ Cannot be specified.
◦ An iterative process is needed to find a working

solution.

 E-type programs
◦ Are embedded in the real world and become part of

it, thereby changing the real world.
◦ This leads to a feedback system where the program

and its environment evolve in concert.

4

IBM OS360/370 Case Studies
 The laws of software evolution were originally based on

observations regarding the evolution of IBM's OS/360
and OS/370.

 The laws were not presented as laws of nature, but
rather as general observations that are expected to
hold for all E-type systems, regardless of specific
programming or management practices.

5

http://en.wikipedia.org/wiki/Meir_M._Lehman
http://www.doc.ic.ac.uk/~mml/

Lehman, M. M. : On Understanding Laws, Evolution, and Conservation in the
Large-Program Life Cycle, Journal of Systems and Software I:213–221 (1980) 6

Laws of software evolution
1. Law of Continuing Change (1974)
◦ “E-type systems must be continually adapted or they become

progressively less satisfactory.”

◦ Software which is used in a real-world environment must change
or become less and less useful in that environment.

2. Law of Increasing Complexity (1974)
◦ “As an E-type system evolves its complexity increases unless

work is done to maintain or reduce it.”

◦ As an evolving program changes, its structure becomes more
complex, unless active efforts are made to avoid this
phenomenon.

28/02/2013

2

7

Laws of software evolution …
3. Law of Self Regulation (1978)
◦ “E-type system evolution process is self regulating with

distribution of product and process measures close to normal.”

◦ System attributes such as size, time between releases, and the
number of reported errors are approximately invariant for each
system release.

4. Law of Conservation of Organisational Stability
◦ “The average effective global activity rate in an evolving E-type

system is invariant over product lifetime.”

◦ Over a program’s lifetime, its rate of development is approximately
constant and independent of the resources devoted to system
development.

8

Laws of software evolution …
5. Law of Conservation of Familiarity (1978)
◦ “As an E-type system evolves all associated with it, developers,

sales personnel, users, for example, must maintain mastery of its
content and behaviour to achieve satisfactory evolution.
Excessive growth diminishes that mastery.”

◦ Over the lifetime of a system, the incremental system change in
each release is approximately constant.

◦ The average incremental growth of systems tends to remain
constant or decline over time.

6. Law of Continuing Growth (1991)
◦ “The functional content of E-type systems must be continually

increased to maintain user satisfaction over their lifetime.”

◦ Functional capability must increase over the lifetime of a system
to maintain user satisfaction.

9

Laws of software evolution …
7. Law Declining Quality (1996)
◦ “The quality of E-type systems will appear to be declining unless

they are rigorously maintained and adapted to operational
environment changes.”

◦ Unless rigorously adapted, quality will appear to decline over time.

8. Law of Feedback System (1996)
◦ “E-type evolution processes constitute multi-level, multi-loop,

multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base”

◦ Evolution systems are multi-level, multi-agent, multi-loop feedback
systems.

10

Laws of software evolution …
 Lehman’s Fifth Law of Software Evolution
◦ “Over the lifetime of a system, the incremental system

change in each release is approximately constant.”

 What can we say about the complexity of the
software systems developed over the past 50
years?
◦ Constant?

◦ Increase?

http://en.wikipedia.org/wiki/Lehman's_laws_of_software_evolution

Seven basic questions…[Erdos/Sneed]

A maintenance programmer must ask to be able to maintain
programs that are only partially understood:
1. Where is a particular subroutine or procedure invoked?
2. What are the arguments and results of a particular

function?
3. How does the flow of control reach a particular location?
4. Where is a particular variable set, used or queried?
5. Where is a particular variable declared?
6. Where is a particular data object accessed, i.e. created,

read, updated, or deleted?
7. What are the inputs and outputs of a particular module?

11

What tools do you use to answer these questions?

Learning objectives
 Understand differences between reverse

engineering, forward engineering and
reengineering

 Learn the concepts of design discovery/recovery
and re-documentation

 Discuss the application of reverse engineering
techniques to software maintenance problems

 Understand the weaknesses in reverse
engineering techniques

 Learn about different tools to support reverse
engineering

12

28/02/2013

3

13

Software reverse engineering
 Def. A two-step process
◦ Information extraction
◦ Information abstraction

 Def. A three-step process [Tilley95]
◦ Information gathering
◦ Knowledge organization
◦ Information navigation, analysis, and presentation

 Def. Analyzing subject system [CC90]
◦ to identify its current components and their dependencies
◦ to extract and create system abstractions and design

information

 The subject system is not altered; however, additional
knowledge about the system is produced

