
28/02/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Marking
◦ Midterm will be returned on Thu in class
◦ A1 graded
◦ Mon office hours reserved for marking questions —1:30-2:30 ECS 660

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 2
◦ Due March 11 — revised
◦ Reverse engineering and program understanding

 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (gawk)
 Rigi demo on Monday

◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Video of the Week
https://www.youtube.com/watch?feature=player_embedded&v=nKIu9yen5nc

3

Midterm Question I
Some basic definitions
 Software — the programs, documentation, and

operating procedures by which computers can be
made useful to humans

 Software evolution — a process of continuous
change from a lower, simpler to a higher, more
complex, or better state

 Software maintenance — modification of a
software product after delivery, to correct faults,
to improve performance or other attributes, or
to adapt the product to a modified environment

 Maintainability — the ease with which
maintenance can be carried out

4

Midterm Question 2
Scale Changes Everything
 Characteristics of ULS systems arise because of their

scale
◦ Decentralization

◦ Inherently conflicting, unknowable, and diverse requirements

◦ Continuous evolution and deployment

◦ Heterogeneous, inconsistent, and changing elements

◦ Erosion of the people/system boundary

◦ Normal failures

◦ New paradigms for acquisition and policy

5

These characteristics may appear in today’s systems,
but in ULS systems they dominate.

These characteristics undermine the assumptions
that underlie today’s software engineering approaches.

Midterm Question 2
ULS Systems Operate More Like Cities
 Built or conceived by many individuals over long periods

of time (Rome)
 The form of the city is not specified by requirements,

but loosely coordinated and regulated—zoning laws,
building codes, economic incentives (change over time)

 Every day in every city construction is going on, repairs
are taking place, modifications are being made—yet, the
cities continue to function

 ULS systems will not simply be bigger systems: they will
be interdependent webs of software-intensive systems,
people, policies, cultures, and economics

6

28/02/2013

2

Midterm Question 2
Decentralized Ecosystems
 For 40 years we have embraced the traditional

centralized engineering perspective for building
software
◦ Central control, top-down, tradeoff analysis

 Beyond a certain complexity threshold, traditional
centralized engineering perspective is no longer
sufficient and cannot be the primary means by which
ultra-complex systems are made real
◦ Firms are engineered—but the

structure of the economy is not
◦ The protocols of the Internet were

engineered—but not the Web as a whole

 Ecosystems exhibit high degrees of
complexity and organization—but not
necessarily through engineering

7

Midterm Question 3
Autonomic Element

 Consists of an Autonomic
Manager (AM) and an
Managed Element (ME)

 Manager and managed
element form a
level of indirection
◦ Spatially and temporally

separate entities

◦ Enterprise Service
Bus

Knowledge

Plan

ExecuteMonitor

Analyze

Sensors Effectors

Sensors Effectors

Managed Element

Autonomic
Manager

Level of indirection

8

MAPE-K Loop
Midterm Question 3

Monitor Analyzer
 Senses the managed

process and its context
 Collects data from the

managed resource
 Provides mechanisms to

aggregate and filter
incoming data stream

 Stores relevant and critical
data in the knowledge base
or repository for future
reference.

 Compares event data
against patterns in the
knowledge base to
diagnose symptoms and
stores the symptoms

 Correlates incoming data
with historical data and
policies stored in
repository

 Analyzes symptoms
 Predicts problems

9

MAPE-K Loop
Midterm Question 3

Planner Execute Engine

 Interprets the symptoms
and devises a plan

 Decides on a plan of action

 Constructs actions
◦ building scripts

 Implements policies

 Often performed manually

 Executes the change in the
managed process through
the effectors

 Perform the execution plan

 Often performed manually

10

Midterm question 4
Definitions
 Ecosystem
◦ In biology, an ecosystem is a

community of plants, animals, and
microorganisms that are linked by
energy and nutrient flows
interacting with each other and
with the physical environment.

◦ Rain forests, deserts, coral reefs,
grasslands, and a rotting log are all
examples of ecosystems

 Socio-technical ecosystem
◦ An ecosystem whose elements

are groups of people together
with their computational and
physical environments

◦ ULS systems can be characterized
as socio-technical ecosystems

 ULS system
◦ A system whose dimensions are of

such a scale that constructing the
system using development processes
and techniques prevailing at the start
of the 21st century is problematic.

◦ ULS system characteristics
 Decentralization
 Conflicting, unknowable, and diverse

requirements
 Continuous evolution and deployment
 Heterogeneous and changing element
 Erosion of the people/system boundary
 Normal failures of parts of the system

11
cf. Glossary in ULS Book

Midterm Question 4
Evolution of Software Systems
 Legacy systems
 Systems of Systems

12

Ultra-Large-Scale (ULS) Systems
Socio-Technical Ecosystems

28/02/2013

3

Midterm Question 4
Change of Perspective
 From satisfaction of requirements through

traditional, top-down engineering

 To satisfaction of requirements by regulation of
complex, decentralized systems

13

With adaptive systems
and feedback loops

The system shall do this
… but it may do this …
as long as it does this …

How?

Midterm Question 4
Socio-Technical Ecosystems
 Socio-technical ecosystems include people, organizations,

and technologies at all levels with significant and often
competing interdependencies.

 In such systems there is

◦ Competition for resources

◦ Organizations and participants responsible for setting policies

◦ Organizations and participants responsible for producing ULS
systems

◦ Need for local and global indicators of health that will trigger
necessary changes in policies and in element and system
behavior

14

Midterm Question 5
Self-Adaptive Systems
 A self-adaptive system continuously adjusts

its behaviour at run-time in response to its
perception of its environment and its own
state in the form of fully or semiautomatic
self-adaptation.

 H. Giese, Y. Brun, J. Serugendo, C. Gacek, H.
Kienle, H. Müller, M. Pezzè, M. Shaw.:
Engineering Self-Adaptive and Self-Managing
Systems, LNCS 5527, Springer, 2009.

15

Midterm Question 5
Key Questions
 How often should adaptation be considered?

◦ Policies range from continuous (proactive) adaptation to
as-and-when necessary (reactive)

◦ Adaptation can also be opportunistic—exploiting resources
such as CPU time when it is not being used for other tasks

◦ “Go green” adaptation

 What kind of information must be collected to make
adaptation decisions
◦ Data can be gathered continuously

 This provides precise and up-to-date observations, but
incurs relatively high cost

◦ Data can be gathered less often with the resulting samples
being approximations of environment activity; this approach
imposes less overhead

◦ Trust issues

16

Midterm Question 5
Key Questions
 Under what circumstances is adaptation cost-effective?
 The benefits gained from making a change must outweigh

the costs associated with making the change
 Costs include:
◦ Performance and memory overhead of monitoring system

behaviour
 Monitoring is necessary to make adaptation decisions
 Memory may be limited on, particularly if adaptive software runs on

embedded devices
◦ Decision making—interpreting data gathered from

monitoring may be computationally expensive
◦ Executing the actions to actually change a system

configuration
 Changes involving physically distributed systems must be coordinated

which itself incurs additional overhead

17

Reading assignments
 Chikofsky, Cross: Reverse Engineering and Design

Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=43044

 Kienle, Müller: Rigi—An Environment for Software
Reverse Engineering, Exploration, Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr. 2010.
http://www.sciencedirect.com/science/article/pii/S016764230900149X

 Müller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.
http://dl.acm.org/citation.cfm?id=336526

18

28/02/2013

4

Lehman and Belady’s
System Classification
 S-type programs
◦ Can be specified formally.

 P-type programs
◦ Cannot be specified.
◦ An iterative process is needed to find a working

solution.

 E-type programs
◦ Are embedded in the real world and become part of

it, thereby changing the real world.
◦ This leads to a feedback system where the program

and its environment evolve in concert.

19 20

Laws of software evolution
1. Law of Continuing Change (1974)
◦ “E-type systems must be continually adapted or they become

progressively less satisfactory.”

◦ Software which is used in a real-world environment must change
or become less and less useful in that environment.

2. Law of Increasing Complexity (1974)
◦ “As an E-type system evolves its complexity increases unless

work is done to maintain or reduce it.”

◦ As an evolving program changes, its structure becomes more
complex, unless active efforts are made to avoid this
phenomenon.

21

Laws of software evolution …
3. Law of Self Regulation (1978)
◦ “E-type system evolution process is self regulating with

distribution of product and process measures close to normal.”

◦ System attributes such as size, time between releases, and the
number of reported errors are approximately invariant for each
system release.

4. Law of Conservation of Organisational Stability
◦ “The average effective global activity rate in an evolving E-type

system is invariant over product lifetime.”

◦ Over a program’s lifetime, its rate of development is approximately
constant and independent of the resources devoted to system
development.

22

Laws of software evolution …
5. Law of Conservation of Familiarity (1978)
◦ “As an E-type system evolves all associated with it, developers,

sales personnel, users, for example, must maintain mastery of its
content and behaviour to achieve satisfactory evolution.
Excessive growth diminishes that mastery.”

◦ Over the lifetime of a system, the incremental system change in
each release is approximately constant.

◦ The average incremental growth of systems tends to remain
constant or decline over time.

6. Law of Continuing Growth (1991)
◦ “The functional content of E-type systems must be continually

increased to maintain user satisfaction over their lifetime.”
◦ Functional capability must increase over the lifetime of a system

to maintain user satisfaction.

23

Laws of software evolution …
7. Law Declining Quality (1996)
◦ “The quality of E-type systems will appear to be declining unless

they are rigorously maintained and adapted to operational
environment changes.”

◦ Unless rigorously adapted, quality will appear to decline over time.

8. Law of Feedback System (1996)
◦ “E-type evolution processes constitute multi-level, multi-loop,

multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base”

◦ Evolution systems are multi-level, multi-agent, multi-loop feedback
systems.

Seven basic questions…[Erdos/Sneed]

A maintenance programmer must ask to be able to maintain
programs that are only partially understood:
1. Where is a particular subroutine or procedure invoked?
2. What are the arguments and results of a particular

function?
3. How does the flow of control reach a particular location?
4. Where is a particular variable set, used or queried?
5. Where is a particular variable declared?
6. Where is a particular data object accessed, i.e. created,

read, updated, or deleted?
7. What are the inputs and outputs of a particular module?

24

What tools do you use to answer these questions?

28/02/2013

5

Learning objectives
 Understand differences between reverse

engineering, forward engineering and
reengineering

 Learn the concepts of design discovery/recovery
and re-documentation

 Discuss the application of reverse engineering
techniques to software maintenance problems

 Understand the weaknesses in reverse
engineering techniques

 Learn about different tools to support reverse
engineering

25 26

Software reverse engineering
 Def. A two-step process
◦ Information extraction
◦ Information abstraction

 Def. A three-step process [Tilley95]
◦ Information gathering
◦ Knowledge organization
◦ Information navigation, analysis, and presentation

 Def. Analyzing subject system [CC90]
◦ to identify its current components and their dependencies
◦ to extract and create system abstractions and design

information

 The subject system is not altered; however, additional
knowledge about the system is produced

27

Software reverse engineering …
 Feedback loops in life cycle models (e.g., waterfall or spiral model)

are opportunities for reverse engineering
 Related terms
◦ Abstraction and composition
◦ Design recovery [Big89] and concept assignment [BMW94]
◦ Redocumentation [WTMS95]
◦ Inverse engineering [RBCM91]
◦ Static and dynamic analysis
◦ Summarizing resource flows and software structures
◦ Change and impact analysis
◦ Maintainability analysis
◦ Migration analysis
◦ Portfolio analysis
◦ Economic analysis

28

Forward engineering

 Traditional software process of moving
from high-level abstractions and logical
implementation-independent designs to
the physical implementation of a system

Requirements

Design

Source code

Behaviour

29

Restructuring
 Transformation from one representation to

another at the same relative abstraction level,
while preserving the subject’s system external
behavior

Requirements

Design

Source code

Behaviour

30

The Horseshoe Model
of Software Migration

Existing system New system

Abstract system

