
07/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Marking
◦ Midterm and A1 graded
◦ Marks posted
◦ Today office hours reserved for marking questions —1:30-2:30 ECS 660

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 2
◦ Due March 11 — revised
◦ Reverse engineering and program understanding

 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (gawk)

◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Reading assignments
 Chikofsky, Cross: Reverse Engineering and Design

Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=43044

 Kienle, Müller: Rigi—An Environment for Software
Reverse Engineering, Exploration, Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr. 2010.
http://www.sciencedirect.com/science/article/pii/S016764230900149X

 Müller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.
http://dl.acm.org/citation.cfm?id=336526

3 4

Software reverse engineering
 Def. A two-step process
◦ Information extraction
◦ Information abstraction

 Def. A three-step process [Tilley95]
◦ Information gathering
◦ Knowledge organization
◦ Information navigation, analysis, and presentation

 Def. Analyzing subject system [CC90]
◦ to identify its current components and their dependencies
◦ to extract and create system abstractions and design

information

 The subject system is not altered; however, additional
knowledge about the system is produced

5

The Horseshoe Model
of Software Migration

Existing system New system

Abstract system

Reengineering Categories

 Automatic restructuring
 Automatic transformation
 Semi-automatic transformation
 Design recovery and reimplementation
 Code reverse engineering and forward

engineering
 Data reverse engineering and schema migration
 Migration of legacy systems to modern

platforms

6

07/03/2013

2

7

The Horseshoe Model

Existing system New system

Abstract system

Components Middleware

Automatic

Semi-automatic

Reengineering Categories...
 Automatic restructuring
◦ to obtain more readable source code
◦ enforce coding standards

 Automatic transformation
◦ to obtain better source code
◦ HTML’izing of source code
◦ simplify control flow (e.g., dead code, goto’s)
◦ refactoring and re-modularizeing
◦ Y2K remediation

8

Reengineering Categories...
 Semi-automatic transformation
◦ to obtain better engineered system (e.g., re-architect

code and data)

◦ semi-automatic construction of structural, functional,
and behavioral abstractions
◦ re-architecting or re-implementing the subject system

from these abstractions

9

Design Recovery
Levels of Abstractions

 Application
◦ Concepts, business rules, policies

 Function
◦ Logical and functional specifications,

non-functional requirements

 Structure
◦ Data and control flow, dependency graphs
◦ Structure and subsystem charts
◦ Software Architectures

 Implementation
◦ AST’s, symbol tables, source text

10

Synthesizing Concepts
 Build multiple hierarchical mental models
 Subsystems based on SE principles
◦ classes, modules, directories, cohesion,

data & control flows, slices

 Design and change patterns
 Business and technology models
 Function, system, and application architectures
 Common services and infrastructure

11 12

How do you document
software architecture?

 Documenting the relevant views one at a time
and then adding information that applies to
more than one view

 Modules or subsystems and how the compose
or decompose into code units

 Processes and how they synchronize
 Programs and how they invoke each other or

send data to each other
 Partition of system into work assignments
 How components and connectors work at run

time

07/03/2013

3

13

Organizational axes
Abstraction hierarchies

 Aggregation hierarchies
◦ part-of relationships

 Generalization / specialization hierarchies
◦ is-a relationships
◦ inheritance

 Grouping
◦ arbitrary

 Classification
◦ category, instances
◦ type, variables
◦ class, objects

14

The ubiquitous graph model

Subsystem

Aggregation

Calls
Functions

Composite node

Subsystem

Generalization

Data

Composite arc
Abstraction mechanisms
Classification, aggregation,
generalization, grouping

Model
Entities and relationships
Typed nodes and arcs

15

Rigi System

 Website
◦ http://www.program-

transformation.org/Transform/RigiSystem

 Installation
◦ http://www.program-

transformation.org/Transform/RigiInstall

 Publications
◦ http://www.program-

transformation.org/Transform/RigiPublications

16

17

SHriMP Download
http://sourceforge.net/projects/chiselgroup/ 18

How do you document
software architecture?
 Box and arrow diagrams
 UML diagrams
 Class diagrams in

Rational Rose

 Software architectures are complicated—
typically too complicated to view all at once

07/03/2013

4

Views
 2009—UML 2.2
◦ http://www.omg.org/spec/UML/2.2/
◦ Seven structural modeling diagrams
◦ Seven behavioral modeling diagrams

 2003—SEI Views
◦ Documenting Software Architectures

by Clemens, Bachmann, Bass, Garlan, Little, Nord, Stafford
◦ http://www.sei.cmu.edu/ata/C4ISR_03/C4ISR_03_1.htm

 2003—UML 2.0
 2000—Siemens Views
◦ Applied Software Architecture
◦ by Hofmeister, Nord and Soni, Siemens

 1997—UML 1.0
 1995—Rational Views
◦ Also referred to as 4+1 view model of software architecture
◦ by Kruchten, Rational

 1980 Software Cost Reduction (SCR) Method
◦ by Parnas et al.
◦ Module view, Uses view, Process View

 Programming languages as design notation

19

