
07/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Marking
◦ Midterm and A1 graded
◦ Marks posted
◦ Today office hours reserved for marking questions —1:30-2:30 ECS 660

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 2
◦ Due March 11 — revised
◦ Reverse engineering and program understanding

 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (gawk)

◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Reading assignments
 Chikofsky, Cross: Reverse Engineering and Design

Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=43044

 Kienle, Müller: Rigi—An Environment for Software
Reverse Engineering, Exploration, Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr. 2010.
http://www.sciencedirect.com/science/article/pii/S016764230900149X

 Müller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.
http://dl.acm.org/citation.cfm?id=336526

3 4

Software reverse engineering
 Def. A two-step process
◦ Information extraction
◦ Information abstraction

 Def. A three-step process [Tilley95]
◦ Information gathering
◦ Knowledge organization
◦ Information navigation, analysis, and presentation

 Def. Analyzing subject system [CC90]
◦ to identify its current components and their dependencies
◦ to extract and create system abstractions and design

information

 The subject system is not altered; however, additional
knowledge about the system is produced

5

The Horseshoe Model
of Software Migration

Existing system New system

Abstract system

Reengineering Categories

 Automatic restructuring
 Automatic transformation
 Semi-automatic transformation
 Design recovery and reimplementation
 Code reverse engineering and forward

engineering
 Data reverse engineering and schema migration
 Migration of legacy systems to modern

platforms

6

07/03/2013

2

7

The Horseshoe Model

Existing system New system

Abstract system

Components Middleware

Automatic

Semi-automatic

Reengineering Categories...
 Automatic restructuring
◦ to obtain more readable source code
◦ enforce coding standards

 Automatic transformation
◦ to obtain better source code
◦ HTML’izing of source code
◦ simplify control flow (e.g., dead code, goto’s)
◦ refactoring and re-modularizeing
◦ Y2K remediation

8

Reengineering Categories...
 Semi-automatic transformation
◦ to obtain better engineered system (e.g., re-architect

code and data)

◦ semi-automatic construction of structural, functional,
and behavioral abstractions
◦ re-architecting or re-implementing the subject system

from these abstractions

9

Design Recovery
Levels of Abstractions

 Application
◦ Concepts, business rules, policies

 Function
◦ Logical and functional specifications,

non-functional requirements

 Structure
◦ Data and control flow, dependency graphs
◦ Structure and subsystem charts
◦ Software Architectures

 Implementation
◦ AST’s, symbol tables, source text

10

Synthesizing Concepts
 Build multiple hierarchical mental models
 Subsystems based on SE principles
◦ classes, modules, directories, cohesion,

data & control flows, slices

 Design and change patterns
 Business and technology models
 Function, system, and application architectures
 Common services and infrastructure

11 12

How do you document
software architecture?

 Documenting the relevant views one at a time
and then adding information that applies to
more than one view

 Modules or subsystems and how the compose
or decompose into code units

 Processes and how they synchronize
 Programs and how they invoke each other or

send data to each other
 Partition of system into work assignments
 How components and connectors work at run

time

07/03/2013

3

13

Organizational axes
Abstraction hierarchies

 Aggregation hierarchies
◦ part-of relationships

 Generalization / specialization hierarchies
◦ is-a relationships
◦ inheritance

 Grouping
◦ arbitrary

 Classification
◦ category, instances
◦ type, variables
◦ class, objects

14

The ubiquitous graph model

Subsystem

Aggregation

Calls
Functions

Composite node

Subsystem

Generalization

Data

Composite arc
Abstraction mechanisms
Classification, aggregation,
generalization, grouping

Model
Entities and relationships
Typed nodes and arcs

15

Rigi System

 Website
◦ http://www.program-

transformation.org/Transform/RigiSystem

 Installation
◦ http://www.program-

transformation.org/Transform/RigiInstall

 Publications
◦ http://www.program-

transformation.org/Transform/RigiPublications

16

17

SHriMP Download
http://sourceforge.net/projects/chiselgroup/ 18

How do you document
software architecture?
 Box and arrow diagrams
 UML diagrams
 Class diagrams in

Rational Rose

 Software architectures are complicated—
typically too complicated to view all at once

07/03/2013

4

Views
 2009—UML 2.2
◦ http://www.omg.org/spec/UML/2.2/
◦ Seven structural modeling diagrams
◦ Seven behavioral modeling diagrams

 2003—SEI Views
◦ Documenting Software Architectures

by Clemens, Bachmann, Bass, Garlan, Little, Nord, Stafford
◦ http://www.sei.cmu.edu/ata/C4ISR_03/C4ISR_03_1.htm

 2003—UML 2.0
 2000—Siemens Views
◦ Applied Software Architecture
◦ by Hofmeister, Nord and Soni, Siemens

 1997—UML 1.0
 1995—Rational Views
◦ Also referred to as 4+1 view model of software architecture
◦ by Kruchten, Rational

 1980 Software Cost Reduction (SCR) Method
◦ by Parnas et al.
◦ Module view, Uses view, Process View

 Programming languages as design notation

19

