Welcome to SENG 371
. Software Evolution
~ Spring 2013
A Core Course of the BSEng Program
Hausi A. Miiller, PhD PEng
Professor, Department of Computer Science

Associate Dean Research, Faculty of Engineering
University of Victoria

07/03/2013

Announcements

¢ Marking
© Midterm and Al graded
Marks posted
Today office hours reserved for marking questions —1:30-2:30 ECS 660
» Course website

° Lecture notes posted

° Lab slides and activities are posted
¢ Assignment 2

> Due March || — revised

Reverse engineering and program understanding
Part | —Summarize three papers
Part Il—Define terms
Part Ill—Reverse engineer a C program (gawk)
» Cite your sources
Submit by e-mail to

Reading assignments

Chikofsky, Cross: Reverse Engineering and Design
Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)

Kienle, Miiller: Rigi—An Environment for Software
Reverse Engineering, Exploration,Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr.2010.

Miiller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.

Software reverse engineering

¢ Def. A two-step process
° Information extraction
> Information abstraction
¢ Def. A three-step process [Tilley95]
o Information gathering
> Knowledge organization
© Information navigation, analysis, and presentation
o Def. Analyzing subject system [CC90]
> to identify its current components and their dependencies

© to extract and create system abstractions and design
information

¢ The subject system is not altered; however, additional
knowledge about the system is produced

The Horseshoe Model
of Software Migration

Existing system New system

Reengineering Categories

e Automatic restructuring

¢ Automatic transformation

» Semi-automatic transformation

¢ Design recovery and reimplementation

¢ Code reverse engineering and forward
engineering

¢ Data reverse engineering and schema migration

 Migration of legacy systems to modern
platforms




The Horseshoe Model

Semi-automatic

Components Middleware

Existing system New system

Automatic

07/03/2013

Reengineering Categories...

e Automatic restructuring
° to obtain more readable source code
> enforce coding standards

e Automatic transformation
> to obtain better source code
o HTMULizing of source code
o simplify control flow (e.g., dead code, goto’s)
> refactoring and re-modularizeing
> Y2K remediation

Reengineering Categories...

¢ Semi-automatic transformation
© to obtain better engineered system (e.g., re-architect
code and data)
° semi-automatic construction of structural, functional,
and behavioral abstractions

> re-architecting or re-implementing the subject system
from these abstractions

Design Recovery
Levels of Abstractions

* Application

> Concepts, business rules, policies

¢ Function

> Logical and functional specifications,
non-functional requirements

e Structure
> Data and control flow, dependency graphs
o Structure and subsystem charts
o Software Architectures

 Implementation
> AST’s, symbol tables, source text

Synthesizing Concepts

e Build multiple hierarchical mental models
* Subsystems based on SE principles

> classes, modules, directories, cohesion,
data & control flows, slices

* Design and change patterns

 Business and technology models

e Function, system, and application architectures
e Common services and infrastructure

How do you document
software architecture?

¢ Documenting the relevant views one at a time
and then adding information that applies to
more than one view

* Modules or subsystems and how the compose
or decompose into code units

* Processes and how they synchronize

* Programs and how they invoke each other or
send data to each other

* Partition of system into work assignments

¢ How components and connectors work at run
time




Organizational axes
Abstraction hierarchies

» Aggregation hierarchies
° part-of relationships

* Generalization / specialization hierarchies
© is-a relationships
° inheritance

* Grouping
© arbitrary

e Classification
° category, instances
° type, variables
° class, objects

07/03/2013

The ubiquitous graph model

Abstraction mechanisms
Classification, aggregation,
generalization, grouping

Model
Entities and relationships
Typed nodes and arcs

Rigi System

* Website

o

¢ Installation

o

» Publications

o

Cansurnabie fhing EMaal course L

SHriMP Download
http://sourceforge.net/projects/chiselgroup/

How do you document
software architecture?
* Box and arrow diagrams

e UML diagrams

¢ Class diagrams in
Rational Rose

Mot = vigws

« Software architectures are complicated—
typically too complicated to view all at once




Amin

SorTuARE

Views e

2009—UML 2.2

Seven structural modeling diagrams
Seven behavioral modeling diagrams
2003—SElViews

Dogcumenting Software Architectures
by Clemens.iachmann, Bass, Garlan, Little, Nord, Stafford

2003—UML 2.0
2000—Siemens Views
> Applied Software Architecture
by Hofmeister, Nord and Soni, Siemens
1997—UML 1.0
1995—Rational Views
Also referred to as 4+ view model of software architecture
by Kruchten, Rational
1980 Software Cost Reduction (SCR) Method
by Parnas et al.
Module view, Uses view, Process View
Programming languages as design notation

07/03/2013



