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Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Marking
◦ Midterm and A1 graded
◦ Marks posted
◦ Today office hours reserved for marking questions —1:30-2:30 ECS 660

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 2
◦ Due March 11 — revised
◦ Reverse engineering and program understanding

 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (gawk)

◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca
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Reading assignments
 Chikofsky, Cross: Reverse Engineering and Design 

Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=43044

 Kienle, Müller: Rigi—An Environment for Software 
Reverse Engineering, Exploration, Visualization, and 
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr. 2010. 
http://www.sciencedirect.com/science/article/pii/S016764230900149X

 Müller, Jahnke, Smith, Storey, Tilley, Wong, Reverse 
Engineering: A Roadmap, in The Future of Software 
Engineering, ICSE 2000 Millennium Celebration, 2000.
http://dl.acm.org/citation.cfm?id=336526
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Software reverse engineering
 Def. A two-step process
◦ Information extraction
◦ Information abstraction

 Def.  A three-step process [Tilley95]
◦ Information gathering
◦ Knowledge organization
◦ Information navigation, analysis, and presentation

 Def. Analyzing subject system [CC90]
◦ to identify its current components and their dependencies
◦ to extract and create system abstractions and design 

information

 The subject system is not altered; however, additional 
knowledge about the system is produced
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The Horseshoe Model
of Software Migration

Existing system New system

Abstract system

Reengineering Categories

 Automatic restructuring
 Automatic transformation
 Semi-automatic transformation
 Design recovery and reimplementation
 Code reverse engineering and forward 

engineering
 Data reverse engineering and schema migration
 Migration of legacy systems to modern 

platforms
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The Horseshoe Model

Existing system New system

Abstract system

Components Middleware

Automatic

Semi-automatic

Reengineering Categories...
 Automatic restructuring
◦ to obtain more readable source code
◦ enforce coding standards

 Automatic transformation
◦ to obtain better source code
◦ HTML’izing of source code
◦ simplify control flow (e.g., dead code, goto’s)
◦ refactoring and re-modularizeing
◦ Y2K remediation
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Reengineering Categories...
 Semi-automatic transformation
◦ to obtain better engineered system (e.g., re-architect 

code and data)

◦ semi-automatic construction of structural, functional, 
and behavioral abstractions
◦ re-architecting or re-implementing the subject system 

from these abstractions
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Design Recovery
Levels of Abstractions

 Application
◦ Concepts, business rules, policies

 Function
◦ Logical and functional specifications,

non-functional requirements

 Structure
◦ Data and control flow, dependency graphs
◦ Structure and subsystem charts
◦ Software Architectures

 Implementation
◦ AST’s, symbol tables, source text
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Synthesizing Concepts
 Build multiple hierarchical mental models
 Subsystems based on SE principles
◦ classes, modules, directories, cohesion,

data & control flows, slices

 Design and change patterns
 Business and technology models
 Function, system, and application architectures
 Common services and infrastructure
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How do you document
software architecture?

 Documenting the relevant views one at a time 
and then adding information that applies to 
more than one view

 Modules or subsystems and how the compose 
or decompose into code units

 Processes and how they synchronize
 Programs and how they invoke each other or 

send data to each other
 Partition of system into work assignments
 How components and connectors work at run 

time
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Organizational axes
Abstraction hierarchies

 Aggregation hierarchies
◦ part-of relationships

 Generalization / specialization hierarchies
◦ is-a relationships
◦ inheritance

 Grouping
◦ arbitrary

 Classification
◦ category, instances
◦ type, variables
◦ class, objects
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The ubiquitous graph model

Subsystem

Aggregation

Calls
Functions

Composite node           

Subsystem

Generalization

Data

Composite arc
Abstraction mechanisms
Classification, aggregation, 
generalization, grouping

Model
Entities and relationships
Typed nodes and arcs
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Rigi System

 Website 
◦ http://www.program-

transformation.org/Transform/RigiSystem

 Installation
◦ http://www.program-

transformation.org/Transform/RigiInstall

 Publications
◦ http://www.program-

transformation.org/Transform/RigiPublications
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SHriMP Download
http://sourceforge.net/projects/chiselgroup/ 18

How do you document
software architecture?
 Box and arrow diagrams
 UML diagrams
 Class diagrams in

Rational Rose

 Software architectures are complicated—
typically too complicated to view all at once
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Views
 2009—UML 2.2
◦ http://www.omg.org/spec/UML/2.2/
◦ Seven structural modeling diagrams
◦ Seven behavioral modeling diagrams

 2003—SEI Views
◦ Documenting Software Architectures

by Clemens, Bachmann, Bass, Garlan, Little, Nord, Stafford
◦ http://www.sei.cmu.edu/ata/C4ISR_03/C4ISR_03_1.htm

 2003—UML 2.0
 2000—Siemens Views
◦ Applied Software Architecture
◦ by Hofmeister, Nord and Soni, Siemens

 1997—UML 1.0
 1995—Rational Views
◦ Also referred to as 4+1 view model of software architecture
◦ by Kruchten, Rational

 1980 Software Cost Reduction (SCR) Method 
◦ by Parnas et al.
◦ Module view, Uses view, Process View

 Programming languages as design notation

19


