
11/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Lab attendance

◦ Has been a problem as of late — needs to change

◦ Several questions on labs on final exam

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Marking
◦ Midterm and A1 graded

◦ Marks posted

 Course website
◦ http://www.engr.uvic.ca/~seng371

◦ Lecture notes posted

◦ Lab slides and activities are posted

 Assignment 2
◦ Due March 11 — revised — today midnight

◦ Reverse engineering and program understanding
 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (gawk)

◦ Cite your sources

◦ Submit by e-mail to seng371@uvic.ca

 Assignment 3
 Will be posted by Thursday

2

Feedback Control and the Coming Machine Revolution

3

http://www.youtube.com/watch?v=C4IJXAVXgIo

What were the key points of 
Raffaello D’Andrea’s Keynote?

4

Views
 2009—UML 2.2
◦ http://www.omg.org/spec/UML/2.2/
◦ Seven structural modeling diagrams
◦ Seven behavioral modeling diagrams

 2003—SEI Views
◦ Documenting Software Architectures

by Clemens, Bachmann, Bass, Garlan, Little, Nord, Stafford
◦ http://www.sei.cmu.edu/ata/C4ISR_03/C4ISR_03_1.htm

 2003—UML 2.0
 2000—Siemens Views
◦ Applied Software Architecture
◦ by Hofmeister, Nord and Soni, Siemens

 1997—UML 1.0
 1995—Rational Views
◦ Also referred to as 4+1 view model of software architecture
◦ by Kruchten, Rational

 1980 Software Cost Reduction (SCR) Method 
◦ by Parnas et al.
◦ Module view, Uses view, Process View

 Programming languages as design notation

5 6

An architect must consider
a system in at least three ways

 How is the system structured as a set of code 
units?

 How is the system structured as set of 
elements that have run-time behaviour and 
interactions?

 How does the system relate to non-software 
structures in its environment?

Good final exam question



11/03/2013

2

7

SEI Views
 Documenting Software Architecture: Views and Beyond
◦ Clements, Bachmann, Bass, Garlan, Little, Nord, Stafford, 

3rd edition, Sep 2003.

 Module viewtype
◦ sSystem structured as a set of code units
◦ Document a system’s principals units of 

implementations

 Component-and-connector viewtype
◦ System structured as set of elements that 

have run-time behaviour and interactions
◦ Document the system’s units of execution

 Allocation viewtype
◦ System relate to non-software structures

in its environment
◦ Document the relationship between a system’s 

software and its development and execution environment

Seven rules for sound documentation

 Write documentation from the reader’s point 
of view

 Avoid unnecessary repetition
 Avoid ambiguity
 Use a standard of organisation
 Record rationale
 Keep documentation current but not too 

current
 Review documentation for fitness of purpose

8

9

Module viewtype
 A code unit that implements a set of 

responsibilities
◦ Class, collection of classes, layer, or any 

decomposition of the above (e.g., function 
decomposition)
◦ Properties
 Responsibilities, visibility information, authors 

◦ Relations
 Part of, inherits from (i.e., generalization/spcialization)

◦ Styles
 Decomposition (i.e., subsystem decomposition, Rigi overview 

window)

Linux module view
 Linux subsystems
◦ Process Scheduler (PS) – responsible for supporting multitasking 

by deciding which user process executes.

◦ Memory Manager (MM) – provides a separate memory space for 
each user process.

◦ File System (FS)– provides access to hardware devices

◦ Network Interface (NI)– encapsulates access to network devices

10

11

Styles of module viewtype
 Decomposition style
◦ Part of hierarchy
◦ Subsystem decomposition
◦ Rigi overview window

 Generalization style
◦ Class hierarchy
◦ Inheritance hierarchy

 Layered style
◦ Code in higher layers is only allowed to use code in 

lower layers
◦ Operating system layers

What is a module?
 Software units with well defined interfaces providing a 

set of services
 7 UML diagram types
 Module vs. component
◦ Both are about decomposition
◦ Module has a design time connotation and component a runtime 

connotation
 4 common styles
◦ The decomposition style – containment relationship among 

modules
◦ The uses style – functional dependency relationships among 

modules
◦ Generalization style – specialization relationships among 

modules
◦ Layered style – allowed-to-use relation in a restricted fashion 

among modules

12



11/03/2013

3

Purpose of module viewtype
 Construction
◦ Blueprint for the source code
◦ Modules and physical structures (source code files) will have close 

mapping

 Analysis 
◦ Requirements traceability
◦ Impact analysis

 Communication
◦ Useful for explaining the systems functionality

 Criteria for decomposition
◦ Achievement of certain quality attributes—modifiability

◦ Build-versus-buy decisions
◦ Product line implementations

13 14

Component-and-connector viewtype

 Express runtime behaviour
 Styles
◦ Pipe-and-filter style
◦ Sockets
◦ Shared-data style
◦ Publish-subscribe style
◦ Client-server style
◦ 3-tier style
◦ Peer-to-peer style
◦ Communicating processes
◦ Middleware is a connector
◦ Repositories
◦ 7 UML diagram types

Runtime models

 Elements having some runtime presence –
processes, objects, clients, servers, data 
stores

 Pathways of interaction – communication 
links, protocols, information flows, access 
to shares storage

15

Purpose of component and 
connector viewtype
 To reason about runtime system quality attributes –

performance, reliability, availability
 What are the systems principal executing 

components and how do they interact
 What are the major shared data resources
 Which parts of the system are replicated and how 

many times
 How does data progress through a system as it 

executes
 What protocols of interaction are used by 

communicating entities
 What parts of the system run in parallel
 How can the system’s structure change as it executes

16

17

Allocation viewtype
 Maps software units to elements of the 

environment
◦ Hardware, developers, managers, distributed teams

 Deployment style
 Implementation style
 Work assignment style

18

Siemens Views
 Applied Software Architecture
◦ by Hofmeister, Nord and Soni, Siemens

 Conceptual view
 Execution view
 Module or subsystem view
 Code view



11/03/2013

4

19

System Views
 Module or subsystem view
◦ Often the number of modules in a system exceeds 

the number of lines per module
◦ Partitioning work among programmers
◦ Encapsulation of abstractions
◦ Separated by interfaces
◦ Layers of subsystems (levels of abstraction)

 Code view
◦ Organization of source code into
 object code, libraries, binaries
 versions, files, directories, packages, modules, subsystems

20

System Views
 Conceptual view
◦ Major design elements (entities) and relationships 

among them
◦ Box and arrow diagrams during early design

 Execution view
◦ Dynamic view
◦ Communication, coordination, synchronization
◦ Dynamic loading, I/O, scripting
◦ Side effects, affecting devices

21

Conceptual View Applications
 How does the system fulfill the requirements?
 How are COTS components integrated and 

how do they interact with the rest of the 
system?

 How is domain-specific hardware and software 
integrated?

 How is functionality packaged into product 
releases?

 How are product lines supported?
 How can the impact of changes be minimized?

22

Module View Applications
 How is the product mapped to the software 

platform?
 What system/middleware support/services does 

it use?
 How is testing supported?
◦ Testing harnesses, levels, regression test suites

 How are dependencies among subsystems 
minimized?

 How are changes insulated from COTS 
software?

23

Execution View Applications
 How does the system meet its 

performance, recovery, security, or 
reconfiguration requirements?

 How does the system balance resource 
usage (e.g., CPU load, memory)?

 How is concurrency, replication, or 
distribution achieved?

 How can the impact of changes be 
minimized on the run-time environment?

24

Code View Applications

 How can the time and effort for product 
efforts be reduced?

 How are versions and releases managed?
 How is the build time minimized?
 What tools are used for development?
 How are integration and testing 

supported?


