
11/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Lab attendance

◦ Has been a problem as of late — needs to change

◦ Several questions on labs on final exam

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Marking
◦ Midterm and A1 graded

◦ Marks posted

 Course website
◦ http://www.engr.uvic.ca/~seng371

◦ Lecture notes posted

◦ Lab slides and activities are posted

 Assignment 2
◦ Due March 11 — revised — today midnight

◦ Reverse engineering and program understanding
 Part I—Summarize three papers
 Part II—Define terms
 Part III—Reverse engineer a C program (gawk)

◦ Cite your sources

◦ Submit by e-mail to seng371@uvic.ca

 Assignment 3
 Will be posted by Thursday

2

Feedback Control and the Coming Machine Revolution

3

http://www.youtube.com/watch?v=C4IJXAVXgIo

What were the key points of 
Raffaello D’Andrea’s Keynote?

4

Views
 2009—UML 2.2
◦ http://www.omg.org/spec/UML/2.2/
◦ Seven structural modeling diagrams
◦ Seven behavioral modeling diagrams

 2003—SEI Views
◦ Documenting Software Architectures

by Clemens, Bachmann, Bass, Garlan, Little, Nord, Stafford
◦ http://www.sei.cmu.edu/ata/C4ISR_03/C4ISR_03_1.htm

 2003—UML 2.0
 2000—Siemens Views
◦ Applied Software Architecture
◦ by Hofmeister, Nord and Soni, Siemens

 1997—UML 1.0
 1995—Rational Views
◦ Also referred to as 4+1 view model of software architecture
◦ by Kruchten, Rational

 1980 Software Cost Reduction (SCR) Method 
◦ by Parnas et al.
◦ Module view, Uses view, Process View

 Programming languages as design notation

5 6

An architect must consider
a system in at least three ways

 How is the system structured as a set of code 
units?

 How is the system structured as set of 
elements that have run-time behaviour and 
interactions?

 How does the system relate to non-software 
structures in its environment?

Good final exam question



11/03/2013

2

7

SEI Views
 Documenting Software Architecture: Views and Beyond
◦ Clements, Bachmann, Bass, Garlan, Little, Nord, Stafford, 

3rd edition, Sep 2003.

 Module viewtype
◦ sSystem structured as a set of code units
◦ Document a system’s principals units of 

implementations

 Component-and-connector viewtype
◦ System structured as set of elements that 

have run-time behaviour and interactions
◦ Document the system’s units of execution

 Allocation viewtype
◦ System relate to non-software structures

in its environment
◦ Document the relationship between a system’s 

software and its development and execution environment

Seven rules for sound documentation

 Write documentation from the reader’s point 
of view

 Avoid unnecessary repetition
 Avoid ambiguity
 Use a standard of organisation
 Record rationale
 Keep documentation current but not too 

current
 Review documentation for fitness of purpose

8

9

Module viewtype
 A code unit that implements a set of 

responsibilities
◦ Class, collection of classes, layer, or any 

decomposition of the above (e.g., function 
decomposition)
◦ Properties
 Responsibilities, visibility information, authors 

◦ Relations
 Part of, inherits from (i.e., generalization/spcialization)

◦ Styles
 Decomposition (i.e., subsystem decomposition, Rigi overview 

window)

Linux module view
 Linux subsystems
◦ Process Scheduler (PS) – responsible for supporting multitasking 

by deciding which user process executes.

◦ Memory Manager (MM) – provides a separate memory space for 
each user process.

◦ File System (FS)– provides access to hardware devices

◦ Network Interface (NI)– encapsulates access to network devices

10

11

Styles of module viewtype
 Decomposition style
◦ Part of hierarchy
◦ Subsystem decomposition
◦ Rigi overview window

 Generalization style
◦ Class hierarchy
◦ Inheritance hierarchy

 Layered style
◦ Code in higher layers is only allowed to use code in 

lower layers
◦ Operating system layers

What is a module?
 Software units with well defined interfaces providing a 

set of services
 7 UML diagram types
 Module vs. component
◦ Both are about decomposition
◦ Module has a design time connotation and component a runtime 

connotation
 4 common styles
◦ The decomposition style – containment relationship among 

modules
◦ The uses style – functional dependency relationships among 

modules
◦ Generalization style – specialization relationships among 

modules
◦ Layered style – allowed-to-use relation in a restricted fashion 

among modules

12



11/03/2013

3

Purpose of module viewtype
 Construction
◦ Blueprint for the source code
◦ Modules and physical structures (source code files) will have close 

mapping

 Analysis 
◦ Requirements traceability
◦ Impact analysis

 Communication
◦ Useful for explaining the systems functionality

 Criteria for decomposition
◦ Achievement of certain quality attributes—modifiability

◦ Build-versus-buy decisions
◦ Product line implementations

13 14

Component-and-connector viewtype

 Express runtime behaviour
 Styles
◦ Pipe-and-filter style
◦ Sockets
◦ Shared-data style
◦ Publish-subscribe style
◦ Client-server style
◦ 3-tier style
◦ Peer-to-peer style
◦ Communicating processes
◦ Middleware is a connector
◦ Repositories
◦ 7 UML diagram types

Runtime models

 Elements having some runtime presence –
processes, objects, clients, servers, data 
stores

 Pathways of interaction – communication 
links, protocols, information flows, access 
to shares storage

15

Purpose of component and 
connector viewtype
 To reason about runtime system quality attributes –

performance, reliability, availability
 What are the systems principal executing 

components and how do they interact
 What are the major shared data resources
 Which parts of the system are replicated and how 

many times
 How does data progress through a system as it 

executes
 What protocols of interaction are used by 

communicating entities
 What parts of the system run in parallel
 How can the system’s structure change as it executes

16

17

Allocation viewtype
 Maps software units to elements of the 

environment
◦ Hardware, developers, managers, distributed teams

 Deployment style
 Implementation style
 Work assignment style

18

Siemens Views
 Applied Software Architecture
◦ by Hofmeister, Nord and Soni, Siemens

 Conceptual view
 Execution view
 Module or subsystem view
 Code view



11/03/2013

4

19

System Views
 Module or subsystem view
◦ Often the number of modules in a system exceeds 

the number of lines per module
◦ Partitioning work among programmers
◦ Encapsulation of abstractions
◦ Separated by interfaces
◦ Layers of subsystems (levels of abstraction)

 Code view
◦ Organization of source code into
 object code, libraries, binaries
 versions, files, directories, packages, modules, subsystems

20

System Views
 Conceptual view
◦ Major design elements (entities) and relationships 

among them
◦ Box and arrow diagrams during early design

 Execution view
◦ Dynamic view
◦ Communication, coordination, synchronization
◦ Dynamic loading, I/O, scripting
◦ Side effects, affecting devices

21

Conceptual View Applications
 How does the system fulfill the requirements?
 How are COTS components integrated and 

how do they interact with the rest of the 
system?

 How is domain-specific hardware and software 
integrated?

 How is functionality packaged into product 
releases?

 How are product lines supported?
 How can the impact of changes be minimized?

22

Module View Applications
 How is the product mapped to the software 

platform?
 What system/middleware support/services does 

it use?
 How is testing supported?
◦ Testing harnesses, levels, regression test suites

 How are dependencies among subsystems 
minimized?

 How are changes insulated from COTS 
software?

23

Execution View Applications
 How does the system meet its 

performance, recovery, security, or 
reconfiguration requirements?

 How does the system balance resource 
usage (e.g., CPU load, memory)?

 How is concurrency, replication, or 
distribution achieved?

 How can the impact of changes be 
minimized on the run-time environment?

24

Code View Applications

 How can the time and effort for product 
efforts be reduced?

 How are versions and releases managed?
 How is the build time minimized?
 What tools are used for development?
 How are integration and testing 

supported?


