Welcome to SENG 371

Software Evolution

Spring 2013

A Core Course of the BSEng Program
Hausi A. Miiller, PhD PEng

Professor, Department of Computer Science

Associate Dean Research, Faculty of Engineering
University of Victoria

11/03/2013

Announcements

Lab attendance
Has been a problem as of late — needs to change
Several questions on labs on final exam
Final exam
Sat. April 13— 7:00 -1000 pm
Marking
Midterm and Al graded
Marks posted
Course website

Lecture notes posted
Lab slides and activities are posted
© Assignment2
Due March 11 — revised — today midnight
Reverse engineering and program understanding
Parc I—Summarize three papers
Part l—Define terms
Part ll—Reverse engineer a C program (gawk)
Cite your sources
Submit by e-mail to
+ Assignment 3
Will be posted by Thursday

Feedback Control and the Coming Machine Revolution

R.

llo D'Andrea at ZURICH.MINDS — Feedback Control and the Coming Mac...

What were the key points of
Raffaello D’Andrea’s Keynote?

K i
. SOFTWARE Architectures
VIeWs ARCIITRCTURE . -

e 2009—UML 2.2 _—

Seven structural modeling diagrams
Seven behavioral modeling diagrams
2003—SEIViews

Dogcumenting Software Architectures
by Clemens, Bachmann, Bass, Garlan, Little, Nord, Stafford

2003—UML 2.0
2000—Siemens Views
Applied Software Architecture
by Hofmeister, Nord and Soni, Siemens
1997—UML 1.0
1995—Rational Views
Also referred to as 4+ view model of software architecture
by Kruchten, Rational
1980 Software Cost Reduction (SCR) Method
by Parnas et al.
Module view, Uses view, Process View
Programming languages as design notation

An architect must consider
a system in at least three ways
e How is the system structured as a set of code

units?

¢ How is the system structured as set of
elements that have run-time behaviour and
interactions?

¢ How does the system relate to non-software
structures in its environment?

Good final exam question




SEl Views

¢ Documenting Software Architecture:Views and Beyond

Clements, Bachmann, Bass, Garlan, Little, Nord, Stafford,
3rd edition, Sep 2003.

+ Module viewtype Documenting
sSystem structured as a set of code units Software

Document a system’s principals units of Architectures
implementations

« Component-and-connector viewtype

System structured as set of elements that
have run-time behaviour and interactions

Document the system’s units of execution

¢ Allocation viewtype
System relate to non-software structures
in its environment
Document the relationship between a system’s
software and its development and execution environment

11/03/2013

Seven rules for sound documentation

* Write documentation from the reader’s point
of view

* Avoid unnecessary repetition
¢ Avoid ambiguity

¢ Use a standard of organisation
 Record rationale

» Keep documentation current but not too
current

» Review documentation for fitness of purpose

Module viewtype

¢ A code unit that implements a set of
responsibilities
o Class, collection of classes, layer, or any

decomposition of the above (e.g., function
decomposition)

° Properties

Responsibilities, visibility information, authors
° Relations

Part of, inherits from (i.e., generalization/spcialization)
o Styles

Decomposition (i.e., subsystem decomposition, Rigi overview
window)

Linux module view

e Linux subsystems

= Process Scheduler (PS) — responsible for supporting multitasking
by deciding which user process executes.

© Memory Manager (MM) — provides a separate memory space for
each user process.

> File System (FS)— provides access to hardware devices
> Network Interface (NI)— encapsulates access to network devices

Styles of module viewtype

¢ Decomposition style
° Part of hierarchy
° Subsystem decomposition
° Rigi overview window
¢ Generalization style
o Class hierarchy
° Inheritance hierarchy
e Layered style

> Code in higher layers is only allowed to use code in
lower layers

= Operating system layers

What is a module?

* Software units with well defined interfaces providing a
set of services

¢ 7 UML diagram types
¢ Module vs. component
= Both are about decomposition

> Module has a design time connotation and component a runtime
connotation

* 4 common styles
> The decomposition style — containment relationship among

modules

© The uses style — functional dependency relationships among
modules

= Generalization style — specialization relationships among
modules

© Layered style — allowed-to-use relation in a restricted fashion
among modules




Purpose of module viewtype

¢ Construction
° Blueprint for the source code
> Modules and physical structures (source code files) will have close
mapping
¢ Analysis
> Requirements traceability
° Impact analysis
¢ Communication
o Useful for explaining the systems functionality
o Criteria for decomposition
> Achievement of certain quality attributes—modifiability
° Build-versus-buy decisions
° Product line implementations

11/03/2013

Component-and-connector viewtype

Express runtime behaviour
e Styles

Pipe-and-filter style '-

Sockets -
Shared-data style “

Publish-subscribe style :

Client-server style - '
3-tier style 128

Peer-to-peer style — ————
Communicating processes

Middleware is a connector

Repositories
° 7 UML diagram types

o

o

o

o

Runtime models

¢ Elements having some runtime presence —
processes, objects, clients, servers, data
stores

e Pathways of interaction — communication
links, protocols, information flows, access
to shares storage

Purpose of component and

connector viewtype

¢ To reason about runtime system quality attributes —
performance, reliability, availability

What are the systems principal executing
components and how do they interact

What are the major shared data resources

Which parts of the system are replicated and how
many times

How does data progress through a system as it
executes

What protocols of interaction are used by
communicating entities

What parts of the system run in parallel
How can the system’s structure change as it executes

Allocation viewtype

 Maps software units to elements of the
environment

° Hardware, developers, managers, distributed teams
¢ Deployment style
¢ Implementation style
* Work assignment style

Siemens Views

* Applied Software Architecture
° by Hofmeister, Nord and Soni, Siemens

o Conceptual view Abririn
 Execution view i%zm%Tm

¢ Module or subsystem view
e Code view

e [}
ciEsT)
i




System Views

* Module or subsystem view

> Often the number of modules in a system exceeds
the number of lines per module

> Partitioning work among programmers
> Encapsulation of abstractions
> Separated by interfaces
> Layers of subsystems (levels of abstraction)
» Code view
> Organization of source code into
object code, libraries, binaries
versions, files, directories, packages, modules, subsystems

11/03/2013

System Views

» Conceptual view

> Major design elements (entities) and relationships
among them

> Box and arrow diagrams during early design
 Execution view

> Dynamic view

> Communication, coordination, synchronization

> Dynamic loading, I/O, scripting

> Side effects, affecting devices

Conceptual View Applications

* How does the system fulfill the requirements?

* How are COTS components integrated and
how do they interact with the rest of the
system?

e How is domain-specific hardware and software
integrated?

* How is functionality packaged into product
releases?

* How are product lines supported?
* How can the impact of changes be minimized?

Module View Applications

* How is the product mapped to the software
platform?

* What system/middleware support/services does
it use?

¢ How is testing supported?
o Testing harnesses, levels, regression test suites

* How are dependencies among subsystems
minimized?

* How are changes insulated from COTS
software?

Execution View Applications

* How does the system meet its
performance, recovery, security, or
reconfiguration requirements?

* How does the system balance resource
usage (e.g., CPU load, memory)?

e How is concurrency, replication, or
distribution achieved?

e How can the impact of changes be
minimized on the run-time environment?

Code View Applications

e How can the time and effort for product

efforts be reduced?

* How are versions and releases managed?
¢ How is the build time minimized?

* What tools are used for development?

e How are integration and testing

supported?




