
14/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Lab attendance
◦ Has been a problem as of late — needs to change
◦ Several questions on labs on final exam

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Marking
◦ Midterm and A1 graded
◦ Marks posted

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 3
◦ Due Thu, April 4
◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Reading Assignment
 Murphy, Notkin, Lan: An empirical study of static call graph

extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com

3 4

Views: Separation of concerns
 Interfaces
 APIs
 COTS, middleware
 Scripting layers
 Extensibility,

genericity
 Event handling
 Performance
 Platforms, product

lines
 Persistence, storage

 Electrical diagrams
 Plumbing diagrams
 Perspective views
 Front, top, side views
 Levels of indirection
 Autonomic manager

versus managed
element

5

Views: Separation of Concerns

 UI, DB, algorithms
 Data structures
 Fire walls
 Security architecture
 Middleware components
 Different platforms (i.e., OS)
 Platform dependent/independent parts

6

Views: Design Patterns
 Iterator
 Wrapper façade
 Monitor
 Event handling patterns
 Mediator
 Collection, container
 MVC (Model, View, Controller)
 Serialization
 Exception, error handling
 Algorithms and data structures

14/03/2013

2

7

Views: Architecture Patterns

 Architectural styles
 Event driven architecture (event handling)
 Pipes and filters
 Publish – subscribe

Program understanding
Learning objectives
 Learn different models of program

understanding
 Understand implications of the models on

how we write programs and how we use
and design maintenance tools

Program understanding

 What strategies do you follow when
trying to understand a program written
by someone else?

 Describe the kinds of information you
use to arrive at an understanding of
how it works.

9

Overview
 Program comprehension models
◦ Bottom up
◦ Top down
◦ Integrated meta-model
◦ Opportunistic, Systematic etc.

 Theories about tool support
◦ Cognitive support
◦ Improving flow

10

Different kinds of models

 A mental model describes the
maintainer’s mental representation of the
program to be understood

 A cognitive model describes the
processes and information structures
used to form the mental model

11

What does this code remind you of?

m := (x + y) div 2;

14/03/2013

3

13

Developing mental models using
cognitive models

Mental Model

Mappings
Cognitive Models

Software System
Programming

Domain

Problem Domain

Terminology (1)
 Beacons
◦ Recognizable or familiar features in the code that act

as cues to the presence of certain structures
 Swapping of two variables is a beacon for a sort routine

 Plans
◦ Knowledge elements for developing and validating

expectations, interpretations and inferences
◦ Programming plans and domain plans
◦ Often referred to as clichés, schemas, idioms
◦ Low-level pattern
◦ Slot types (generalized templates) and slot fillers

(specific solutions)

14

Examples of programming plans,
clichés, schemas, or slices

 Reading input
 Counting input
 Running total
 Computing average
 Handling exceptions

Slot types and fillers (plans)
 An example of a slot type could be a function

such as a sort routine
 A slot filler could be a particular

implementation of a sort routine,
for example quicksort

 Slot fillers are related to slot types via either
a Kind-of or an Is-a relationship.

Terminology (2)
 Rules of discourse
◦ Rules or conventions of programming
 naming standards, indentation, white space, in-line documentation

standards, exception handling style, use of include files

◦ Can be imposed by programming language
 Python

◦ Rules of discourse set up expectations in the
mind of programmer

 Cross referencing
◦ Relates different abstraction levels such as a control flow

and functional view by mapping program parts to
functional descriptions

17

cxref command
 Analyzes C files and builds a cross-reference table
 Uses a special version of cc to include #define'd

information in its symbol table.

 Generates a list of all symbols (auto, static, and global)
in each individual file.

 Includes four fields: NAME, FILE, FUNCTION, LINE
◦ The line numbers appearing in the LINE field also show

reference marks as appropriate. The reference marks include:
 assignment =
 declaration –

 definition *
 general reference <no mark>

18

14/03/2013

4

Cognitive models of program
comprehension
 Bottom-up comprehension
 Top-down comprehension
 Knowledge based understanding model
 Systematic and as-needed strategies
 Integrated meta-model of program

comprehension

19

What does this piece code do?
maxValue := table[0];
for k := 1 to MAXINDEX do

if table [k] > maxValue then
maxValue := table [k]

end
end

 Experts do this much faster than novices,
so bottom up comprehension is much more
successful for experts than novices.

21

Bottom-up comprehension (1)
 Starts understanding from the source code,

constructing higher level abstractions using chunking
and concept assignment
◦ Shneiderman and Mayer 79
◦ Pennington 87
◦ Biggerstaff, et al. 93

 Chunking creates new higher level abstractions from
lower level structures

 When higher level structures are recognized, they
replace more detailed lower level ones

 This helps to overcome the limitations of the human
memory when confronted with too many pieces of
information

Bottom-up comprehension (2)
This theory suggests that programmers understand

programs by reading the source code and
documentation, and mentally chunking this
information into progressively larger chunks until an
understanding of the entire program is achieved, uses
both syntactic and semantic knowledge

 Chunks are syntactic or semantic mental abstractions
of text structures within the source code

 Syntactic knowledge: language syntax, available library
routines

 Semantic knowledge: general and task related

Proposed by Shneiderman & Mayer

22

Bottom-up comprehension (3)
Pennington also proposed a bottom up model and

suggests that maintainers first develop a program
model, and then a situation model:

 Program model
◦ Based on control flow abstractions
◦ Developed when code is completely new to programmers
◦ Developed bottom up via beacons – identification of code

control primes in the program
 Situation model
◦ data flow and functional abstractions
◦ Also developed bottom-up – requires knowledge of real world

domains (domain plans)
◦ Cross referencing is used to arrive at the overall program goal

23 24

Top-down comprehension (1)

 Tries to reconstruct the mappings from the
problem domain into the programming domain
that were made when programming the system
◦ Brooks 83

◦ Soloway and Ehrlich 84

 Reconstruction is expectation-driven
◦ Understanding starts with some pre-existing

hypotheses about the functionality of the system and
the engineer investigates whether they hold, should
be rejected, or refined in a hierarchical way

14/03/2013

5

Top-down comprehension (2)

 According to Brookes
◦ Programmer develops a hierarchy of hypotheses

◦ Make heavy use of beacons (cues)

◦ Understanding is complete when a complete set of
mappings can be made from the problem domain to
the programming domain

25

Examples of beacons
 Internal to the program:
◦ Prologue comments
◦ Variable, method, procedure, package names
◦ Data declarations
◦ In-line comments
◦ Subroutine or file structure
◦ I/O formats
◦ XML schemas

 External to the program
◦ User manuals
◦ Cross reference listings
◦ Documentation

26

Top-down comprehension (3)
According to Soloway & Ehrlich
 Three types of programming plans:
◦ Strategic plans – describe a global strategy, domain independent
◦ Tactical plans – local strategies for solving a problem, language

independent
◦ Implementation plans – how to implement tactical plans,

language dependent – may contain code fragments

 Rules of programming discourse and beacons are used
to decompose plans into lower level plans

 Delocalized plans are plans which are implemented in a
distributed manner throughout the program and
complicate program comprehension

 Separation of concerns, aspects oriented programs

27 28

Opportunistic approach

 There is no such thing as a pure top-down or
pure bottom-up approach

 To create mental representations of
the software system programmers frequently
change between top-down
and bottom-up approaches
◦ Letovsky 86

 Or even combine them
◦ Mayrhauser and Vans 95, 96, 97

Knowledge-based understanding (1)
 Letovsky 86
 Describes programmers as opportunistic

processors capable of exploiting either bottom-up
or top-down cues as they become available.

 Three components to his model:
• Knowledge base: encodes a programmer’s expertise and

knowledge before the task
• Mental model: encodes the current understanding of the

program
• Assimilation process: describes how the mental model is

formed using the programmers knowledge and source
code and other documentation

 His study involved
◦ Programmers with unfamiliar code
◦ Ask these programmers to do a task
◦ Asked them to use think-aloud

Knowledge-based understanding (2)
 Knowledge base
 Mental model – 3 layers:
◦ Specification—high level abstract view
◦ Implementation
◦ Annotation

 Assimilation process
◦ May occur bottom-up or top-down or some

combination of the two in an opportunistic manner
◦ Makes use of existing knowledge and any external

help such as source code and documentation
◦ Conjectures
 Why: hypothesize the purpose of a function or design choice
 How: hypothesize the method for accomplishing a program goal
 What: hypothesize classification (e.g. variable or function)

14/03/2013

6

Systematic/as-needed strategies

 Littman et al.
◦ Microstrategies
 inquiry episodes and delocalized plans

◦ Macrostrategies
 systematic and as-needed

31

 von Mayrhauser/Vans – components:
◦ top-down model (domain)
◦ program model (control flow)
◦ situation model (data flow)

◦ knowledge base (programmer background)

 Experiments show that programmers switch
between all three comprehension models

Integrated meta-model

32

Comprehension
processes}

33

Static program analysis
 Def. The process of inferring results about the

nature of a program according to some model
without executing the subject program

 Syntactic analysis, type checking and inference
 Control and data flow analysis
 Structural analysis
 Slicing and dicing
 Cross references
 Complexity measures
 Navigation

