
14/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Lab attendance
◦ Has been a problem as of late — needs to change
◦ Several questions on labs on final exam

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Marking
◦ Midterm and A1 graded
◦ Marks posted

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Assignment 3
◦ Due Thu, April 4
◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Reading Assignment
 Murphy, Notkin, Lan: An empirical study of static call graph

extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com

3 4

Views: Separation of concerns
 Interfaces
 APIs
 COTS, middleware
 Scripting layers
 Extensibility,

genericity
 Event handling
 Performance
 Platforms, product

lines
 Persistence, storage

 Electrical diagrams
 Plumbing diagrams
 Perspective views
 Front, top, side views
 Levels of indirection
 Autonomic manager

versus managed
element

5

Views: Separation of Concerns

 UI, DB, algorithms
 Data structures
 Fire walls
 Security architecture
 Middleware components
 Different platforms (i.e., OS)
 Platform dependent/independent parts

6

Views: Design Patterns
 Iterator
 Wrapper façade
 Monitor
 Event handling patterns
 Mediator
 Collection, container
 MVC (Model, View, Controller)
 Serialization
 Exception, error handling
 Algorithms and data structures

14/03/2013

2

7

Views: Architecture Patterns

 Architectural styles
 Event driven architecture (event handling)
 Pipes and filters
 Publish – subscribe

Program understanding
Learning objectives
 Learn different models of program

understanding
 Understand implications of the models on

how we write programs and how we use
and design maintenance tools

Program understanding

 What strategies do you follow when
trying to understand a program written
by someone else?

 Describe the kinds of information you
use to arrive at an understanding of
how it works.

9

Overview
 Program comprehension models
◦ Bottom up
◦ Top down
◦ Integrated meta-model
◦ Opportunistic, Systematic etc.

 Theories about tool support
◦ Cognitive support
◦ Improving flow

10

Different kinds of models

 A mental model describes the
maintainer’s mental representation of the
program to be understood

 A cognitive model describes the
processes and information structures
used to form the mental model

11

What does this code remind you of?

m := (x + y) div 2;

14/03/2013

3

13

Developing mental models using
cognitive models

Mental Model

Mappings
Cognitive Models

Software System
Programming

Domain

Problem Domain

Terminology (1)
 Beacons
◦ Recognizable or familiar features in the code that act

as cues to the presence of certain structures
 Swapping of two variables is a beacon for a sort routine

 Plans
◦ Knowledge elements for developing and validating

expectations, interpretations and inferences
◦ Programming plans and domain plans
◦ Often referred to as clichés, schemas, idioms
◦ Low-level pattern
◦ Slot types (generalized templates) and slot fillers

(specific solutions)

14

Examples of programming plans,
clichés, schemas, or slices

 Reading input
 Counting input
 Running total
 Computing average
 Handling exceptions

Slot types and fillers (plans)
 An example of a slot type could be a function

such as a sort routine
 A slot filler could be a particular

implementation of a sort routine,
for example quicksort

 Slot fillers are related to slot types via either
a Kind-of or an Is-a relationship.

Terminology (2)
 Rules of discourse
◦ Rules or conventions of programming
 naming standards, indentation, white space, in-line documentation

standards, exception handling style, use of include files

◦ Can be imposed by programming language
 Python

◦ Rules of discourse set up expectations in the
mind of programmer

 Cross referencing
◦ Relates different abstraction levels such as a control flow

and functional view by mapping program parts to
functional descriptions

17

cxref command
 Analyzes C files and builds a cross-reference table
 Uses a special version of cc to include #define'd

information in its symbol table.

 Generates a list of all symbols (auto, static, and global)
in each individual file.

 Includes four fields: NAME, FILE, FUNCTION, LINE
◦ The line numbers appearing in the LINE field also show

reference marks as appropriate. The reference marks include:
 assignment =
 declaration –

 definition *
 general reference <no mark>

18

14/03/2013

4

Cognitive models of program
comprehension
 Bottom-up comprehension
 Top-down comprehension
 Knowledge based understanding model
 Systematic and as-needed strategies
 Integrated meta-model of program

comprehension

19

What does this piece code do?
maxValue := table[0];
for k := 1 to MAXINDEX do

if table [k] > maxValue then
maxValue := table [k]

end
end

 Experts do this much faster than novices,
so bottom up comprehension is much more
successful for experts than novices.

21

Bottom-up comprehension (1)
 Starts understanding from the source code,

constructing higher level abstractions using chunking
and concept assignment
◦ Shneiderman and Mayer 79
◦ Pennington 87
◦ Biggerstaff, et al. 93

 Chunking creates new higher level abstractions from
lower level structures

 When higher level structures are recognized, they
replace more detailed lower level ones

 This helps to overcome the limitations of the human
memory when confronted with too many pieces of
information

Bottom-up comprehension (2)
This theory suggests that programmers understand

programs by reading the source code and
documentation, and mentally chunking this
information into progressively larger chunks until an
understanding of the entire program is achieved, uses
both syntactic and semantic knowledge

 Chunks are syntactic or semantic mental abstractions
of text structures within the source code

 Syntactic knowledge: language syntax, available library
routines

 Semantic knowledge: general and task related

Proposed by Shneiderman & Mayer

22

Bottom-up comprehension (3)
Pennington also proposed a bottom up model and

suggests that maintainers first develop a program
model, and then a situation model:

 Program model
◦ Based on control flow abstractions
◦ Developed when code is completely new to programmers
◦ Developed bottom up via beacons – identification of code

control primes in the program
 Situation model
◦ data flow and functional abstractions
◦ Also developed bottom-up – requires knowledge of real world

domains (domain plans)
◦ Cross referencing is used to arrive at the overall program goal

23 24

Top-down comprehension (1)

 Tries to reconstruct the mappings from the
problem domain into the programming domain
that were made when programming the system
◦ Brooks 83

◦ Soloway and Ehrlich 84

 Reconstruction is expectation-driven
◦ Understanding starts with some pre-existing

hypotheses about the functionality of the system and
the engineer investigates whether they hold, should
be rejected, or refined in a hierarchical way

14/03/2013

5

Top-down comprehension (2)

 According to Brookes
◦ Programmer develops a hierarchy of hypotheses

◦ Make heavy use of beacons (cues)

◦ Understanding is complete when a complete set of
mappings can be made from the problem domain to
the programming domain

25

Examples of beacons
 Internal to the program:
◦ Prologue comments
◦ Variable, method, procedure, package names
◦ Data declarations
◦ In-line comments
◦ Subroutine or file structure
◦ I/O formats
◦ XML schemas

 External to the program
◦ User manuals
◦ Cross reference listings
◦ Documentation

26

Top-down comprehension (3)
According to Soloway & Ehrlich
 Three types of programming plans:
◦ Strategic plans – describe a global strategy, domain independent
◦ Tactical plans – local strategies for solving a problem, language

independent
◦ Implementation plans – how to implement tactical plans,

language dependent – may contain code fragments

 Rules of programming discourse and beacons are used
to decompose plans into lower level plans

 Delocalized plans are plans which are implemented in a
distributed manner throughout the program and
complicate program comprehension

 Separation of concerns, aspects oriented programs

27 28

Opportunistic approach

 There is no such thing as a pure top-down or
pure bottom-up approach

 To create mental representations of
the software system programmers frequently
change between top-down
and bottom-up approaches
◦ Letovsky 86

 Or even combine them
◦ Mayrhauser and Vans 95, 96, 97

Knowledge-based understanding (1)
 Letovsky 86
 Describes programmers as opportunistic

processors capable of exploiting either bottom-up
or top-down cues as they become available.

 Three components to his model:
• Knowledge base: encodes a programmer’s expertise and

knowledge before the task
• Mental model: encodes the current understanding of the

program
• Assimilation process: describes how the mental model is

formed using the programmers knowledge and source
code and other documentation

 His study involved
◦ Programmers with unfamiliar code
◦ Ask these programmers to do a task
◦ Asked them to use think-aloud

Knowledge-based understanding (2)
 Knowledge base
 Mental model – 3 layers:
◦ Specification—high level abstract view
◦ Implementation
◦ Annotation

 Assimilation process
◦ May occur bottom-up or top-down or some

combination of the two in an opportunistic manner
◦ Makes use of existing knowledge and any external

help such as source code and documentation
◦ Conjectures
 Why: hypothesize the purpose of a function or design choice
 How: hypothesize the method for accomplishing a program goal
 What: hypothesize classification (e.g. variable or function)

14/03/2013

6

Systematic/as-needed strategies

 Littman et al.
◦ Microstrategies
 inquiry episodes and delocalized plans

◦ Macrostrategies
 systematic and as-needed

31

 von Mayrhauser/Vans – components:
◦ top-down model (domain)
◦ program model (control flow)
◦ situation model (data flow)

◦ knowledge base (programmer background)

 Experiments show that programmers switch
between all three comprehension models

Integrated meta-model

32

Comprehension
processes}

33

Static program analysis
 Def. The process of inferring results about the

nature of a program according to some model
without executing the subject program

 Syntactic analysis, type checking and inference
 Control and data flow analysis
 Structural analysis
 Slicing and dicing
 Cross references
 Complexity measures
 Navigation

