
18/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Lab attendance

◦ Has been a problem as of late — needs to change

◦ Several questions on labs on final exam

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Teaching evaluations
◦ Next week

 Marking
◦ A2 should be graded this week

◦ Midterm and A1 graded

◦ Marks posted

 Course website
◦ http://www.engr.uvic.ca/~seng371

◦ Lecture notes posted

◦ Lab slides and activities are posted

 Assignment 3
◦ Due Thu, April 4

◦ Part I — Define software evolution terms

◦ Part II — Investigate two AntiPatterns — Vendor-Lock-In — Analysis Paralysis

◦ Part III — Refactoring in IBM Eclipse and MS Visual Studio and Blob AntiPattern

◦ Cite your sources

◦ Submit by e-mail to seng371@uvic.ca

2

Reading Assignment
 Murphy, Notkin, Lan: An empirical study of static call graph

extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com

3 4

Developing mental models using
cognitive models

Mental Model

Mappings
Cognitive Models

Software System
Programming

Domain

Problem Domain

Cognitive models of program
comprehension
 Bottom-up comprehension
 Top-down comprehension
 Knowledge based understanding model
 Systematic and as-needed strategies
 Integrated meta-model of program

comprehension

5 6

Bottom-up comprehension (1)
 Starts understanding from the source code,

constructing higher level abstractions using chunking
and concept assignment
◦ Shneiderman and Mayer 79
◦ Pennington 87
◦ Biggerstaff, et al. 93

 Chunking creates new higher level abstractions from
lower level structures

 When higher level structures are recognized, they
replace more detailed lower level ones

 This helps to overcome the limitations of the human
memory when confronted with too many pieces of
information

18/03/2013

2

Bottom-up comprehension (2)
This theory suggests that programmers understand

programs by reading the source code and
documentation, and mentally chunking this
information into progressively larger chunks until an
understanding of the entire program is achieved, uses
both syntactic and semantic knowledge

 Chunks are syntactic or semantic mental abstractions
of text structures within the source code

 Syntactic knowledge: language syntax, available library
routines

 Semantic knowledge: general and task related

Proposed by Shneiderman & Mayer

7

Bottom-up comprehension (3)
Pennington also proposed a bottom up model and

suggests that maintainers first develop a program
model, and then a situation model:

 Program model
◦ Based on control flow abstractions
◦ Developed when code is completely new to programmers
◦ Developed bottom up via beacons – identification of code

control primes in the program
 Situation model
◦ data flow and functional abstractions
◦ Also developed bottom-up – requires knowledge of real world

domains (domain plans)
◦ Cross referencing is used to arrive at the overall program goal

8

9

Top-down comprehension (1)

 Tries to reconstruct the mappings from the
problem domain into the programming domain
that were made when programming the system
◦ Brooks 83

◦ Soloway and Ehrlich 84

 Reconstruction is expectation-driven
◦ Understanding starts with some pre-existing

hypotheses about the functionality of the system and
the engineer investigates whether they hold, should
be rejected, or refined in a hierarchical way

Top-down comprehension (2)

 According to Brookes
◦ Programmer develops a hierarchy of hypotheses

◦ Make heavy use of beacons (cues)

◦ Understanding is complete when a complete set of
mappings can be made from the problem domain to
the programming domain

10

Top-down comprehension (3)
According to Soloway & Ehrlich
 Three types of programming plans:
◦ Strategic plans – describe a global strategy, domain independent
◦ Tactical plans – local strategies for solving a problem, language

independent
◦ Implementation plans – how to implement tactical plans,

language dependent – may contain code fragments

 Rules of programming discourse and beacons are used
to decompose plans into lower level plans

 Delocalized plans are plans which are implemented in a
distributed manner throughout the program and
complicate program comprehension

 Separation of concerns, aspects oriented programs

11 12

Opportunistic approach

 There is no such thing as a pure top-down or
pure bottom-up approach

 To create mental representations of
the software system programmers frequently
change between top-down
and bottom-up approaches
◦ Letovsky 86

 Or even combine them
◦ Mayrhauser and Vans 95, 96, 97

18/03/2013

3

Knowledge-based understanding (1)
 Letovsky 86
 Describes programmers as opportunistic

processors capable of exploiting either bottom-up
or top-down cues as they become available.

 Three components to his model:
• Knowledge base: encodes a programmer’s expertise and

knowledge before the task
• Mental model: encodes the current understanding of the

program
• Assimilation process: describes how the mental model is

formed using the programmers knowledge and source
code and other documentation

 His study involved
◦ Programmers with unfamiliar code
◦ Ask these programmers to do a task
◦ Asked them to use think-aloud

Knowledge-based understanding (2)
 Knowledge base
 Mental model – 3 layers:
◦ Specification—high level abstract view
◦ Implementation
◦ Annotation

 Assimilation process
◦ May occur bottom-up or top-down or some

combination of the two in an opportunistic manner
◦ Makes use of existing knowledge and any external

help such as source code and documentation
◦ Conjectures
 Why: hypothesize the purpose of a function or design choice
 How: hypothesize the method for accomplishing a program goal
 What: hypothesize classification (e.g. variable or function)

Systematic/as-needed strategies

 Littman et al.
◦ Microstrategies
 inquiry episodes and delocalized plans

◦ Macrostrategies
 systematic and as-needed

15

 von Mayrhauser/Vans – components:
◦ top-down model (domain)
◦ program model (control flow)
◦ situation model (data flow)

◦ knowledge base (programmer background)

 Experiments show that programmers switch
between all three comprehension models

Integrated meta-model

16

Comprehension
processes}

17

Static program analysis
 Def. The process of inferring results about the

nature of a program according to some model
without executing the subject program

 Syntactic analysis, type checking and inference
 Control and data flow analysis
 Structural analysis
 Slicing and dicing
 Cross references
 Complexity measures
 Navigation

18

Dynamic program analysis
 Def. The process of discovering run-time

dependencies in a subject system

 Object instantiation dependencies
 Dynamic binding and polymorphism
 Method invocation graph
 Registered and call-back functions
 Path coverage testing
 Memory management
 Performance bottlenecks
 Transactions
 Concurrency

18/03/2013

4

Observations

 Domain knowledge is very important
 Important to understand a program at a level

so that if changes are made, the effect of the
change can be predicted

 Important to be able to understand what
happens with different inputs to the program

 Different stakeholders in the project have
different understanding needs

19

Explaining the variation in models

 Maintainer characteristics
◦ application/program/domain knowledge
◦ maintainer experience, creativity

 Program characteristics
◦ application/programming domain
◦ size, complexity, quality, documentation

 Task characteristics
◦ adaptive, perfective, corrective, reuse, product lines
◦ Tools, development tools, generation tools, web

development tools, agile development tools
◦ Time constraints

20

Expert Characteristics

 Organize knowledge structures by functional
characteristics they know about

 Have efficient and organized specialized
schemas – leads to top-down comprehension

 They approach program comprehension with
flexibility – discard hypotheses much more
quickly than novices

 They tend to generate a breadth-first view of
the program

Did anyone study real programmers?

Curtis, Lakhotia
 Focus of earlier experiments on novice programmers
 Size of programs – trivial
 Did they execute the program?
 Did they have a specific (realistic) task to perform?
 Early work — failed to give advice for development

of advanced development environments
 Recently more work on end-user programming

and programming for children
 Some new theories concerning very specific

tasks/user types/scenarios

22

Studying real programmers … (1)
 Concept assignment problem [Biggerstaff]
◦ How requirements are delivered—implement

some functionality
◦ Concept assignment—Locate the pieces of

code that implement a particular functionality
◦ Wilde and Gust propose tracing a program

on sample test data that enumerate its
features and use the trace to perform a
mapping between its components and
features
◦ More recent work on the problem of feature

identification

Studying real programmers … (2)
 The importance of search
◦ Singer/Lethbridge study of maintainers in industry –

studied work practices in a telecommunications company
◦ Used different approaches
 Survey
 Tool usage statistics
 Studied the entire group
 Shadowing
 Did search more than looking at documentation
 Seldom looked at call traces
 In-house tools were used much

◦ Search more than documentation, history of search
queries needed

 Discussion point
◦ How do you use search in understanding a program? Are

the current tools adequate? Structural vs text-based.

18/03/2013

5

Flow: A theory of optimal experiences

 Flow is a state of mind, a holistic sensation, that
people feel when they act with total
involvement [Mihaly Csikszentmihalyi]

 Characteristics of flow:
◦ Clear goals
◦ Total sense of involvement
◦ Loss of self-consciousness
◦ Feeling of control and being in control
◦ Altered sense of time (passage of time slows)
◦ Above average skills and challenges (as our skill level

increases we have to increase the challenges)
◦ Can be experienced as part of a team

25

Flow in teams
 Following a flow experience, the organization of the

self is more complex – the self is “growing”
 Complexity is the result of two broad psychological

processes:
◦ Differentiation
◦ Integration

 Differentiation
 A movement towards uniqueness

 Integration
 The opposite, a union with other people, with ideas and

entities beyond the self
 A complex self is one that combines both of these

opposite tendencies.

26

Using flow to provide explanations for features
in modern programming environments
• Concentration

• Autonomous interaction (e.g. auto build), integration of multiple tools

• Interactivity of the environment (backgrounding of tasks), Filters, working sets

• Automation of the boring parts
• Code generation

• Refactoring

• Control over actions
• Hot code replace during debugging

• Keyboard actions versus mouse actions

• Visibility of goals (individual)
• Task view (tags)

• Effective feedback (decorations, annotations, syntax highlighting) during
programming

• Navigation
• Fast views

• Coupling across multiple views
27

Summary
 Program comprehension theories
◦ Bottom-up; Top-down; Knowledge-based,

Integrated….

◦ Many factors influence role of theories

 Theories about tools
◦ Questions maintainers need to answer

◦ Cognitive support theory

◦ Improving flow

28

Learning objectives

 Relate program comprehension theories
to tool support

 Understand what kinds of tools are
available

 Discover how tools can help

29

Program comprehension tools
 Source code is often the only source of

information for understanding programs

 Just reading code cost HP $200 million in one
year (mid nineties!)

 Goal: develop tools to increase efficiency of
reading/comprehending code

30

18/03/2013

6

Why is software development so
challenging?
 Complexity of software
 Large number of artifacts and dynamic dependencies

 Layers of abstractions

 Multi-dimensional

 Human limitations
 Hard limits on human attention

 Comprehension of existing code, models, paradigms,
problem space, notations, languages….

 Coordination with other team members

31

How can tools help?
 By providing tool support:
◦ Chunking, creating mental abstractions
 Subsystem structures, filtering

◦ Hypothesis driven exploration
 Searching, exploring

◦ Switching between strategies
 Views

◦ Feature identification
 Mapping concepts to code

◦ Recording and sharing knowledge
 Documenting and exchanging analyses

32

What kinds of tools?
 Software information often has web-like structures

 Several hypertext browsers for source code

 Such browsers should:
◦ Increase coherence (local and global)

◦ Reduce cognitive overhead

◦ Example: GNU GLOBAL Source Code Tag System
 http://www.gnu.org/software/global/globaldoc.html
 http://www.gnu.org/software/global/manual/global.pdf

 Visualization is also often used to support exploration and pattern
identification

 Search is key!

Software visualization tools
 algorithm animations (more for educational

purposes)
 (visual) debuggers
 pretty printers
 dynamic visualizations
 exploring static software structures

Returning to the theories!
• For bottom up strategies, we need:
◦ Source code listings—with navigational support
◦ Composition abilities—chunking
◦ Filtering—to focus on code of interest
◦ Slicing—for browsing delocalized plans

• For top down exploration:
◦ Pattern identification
◦ Overviews that show the architecture
◦ Top down browsing support

• For integrated and switching:
◦ Navigation across multiple synchronized views

35

Cognitive support and flow!
 Need to reduce or eliminate friction

(Booch)
 Navigation support
◦ Orientation, reduce cognitive overhead,

navigation across different kinds of dependencies
at different levels of abstraction

 Cognitive support
◦ Support distributed cognition
◦ Reduce memory needs
◦ Transpose cognitively challenging tasks into

simpler ones

18/03/2013

7

Navigation support
 Hypertext is one approach
 Navigation views
◦ Package, outline, cross reference, bookmarks,

bread crumbs, history views, …
 Graph navigation
◦ Follow typed dependencies

 Search
◦ Structured vs. unstructured search
◦ Integrated Structured and unstructured search
◦ Search can replace navigation

The promise of software tools
 Makes human cognition easier or better
 Redistribution: Cognitive resources or cognitive processes that are in

the head can be moved outside of the head
 Perceptual substitution: Artifacts can transform a task into one that ca

be done more quickly and more easily
 Ends-means reification: Solving a problem can be considered a search fo

a solution – parts of the problem space can be “reified” – supporting
display-based problem solving

 Tools are an extension of a programmer’s mind:
◦ By providing a mechanism to externalize cognitive processes (e.g., scripts)
◦ By providing alternate representations of information (e.g., models, views)
◦ By supporting the manipulation of artifacts to facilitate cognitive

tracing and experimentation (e.g., filtering, exploration, elision)
◦ By helping bridge the gap from artifacts to abstractions (e.g., chunking

support, building subsystem structures, pattern identification)

38

In particular… visualization

How can visualization improve program
comprehension during software
development, maintenance and evolution?

Information visualization
 People have used external aids for centuries to

amplify cognition
◦ Paper, slide rule, diagrams, charts

 Visualize: to form a mental image or vision
 Visualization is done by humans, it is not done

by a computer
◦ But the use of computer supported,

interactive, visual representations of
abstract data can amplify cognition

 Visualizations can help us gain insight about data

40

An outbreak of cholera
by Dr. John Snow, 1850’s

Gaining Insight from Data….
Software visualization tools…
 Structure of information – architecture
 How the program works – demonstrating the

virtual machine
 Presenting attributes of large software systems
 Changing the perspective – multi-dimensional

views
 Display-based reasoning

42

Software exploration tools provide graphical
views of static and dynamic software structures
linked to textual views of the source code and

documentation – reveal multi-dimensional
views of the software

18/03/2013

8

Example Software Visualization Tools SHriMP, Creole, www.thechiselgroup.org/creole
Margaret-Anne Storey, University of Victoria

44

SHriMP, Creole, www.thechiselgroup.org/creole
Margaret-Anne Storey, University of Victoria

45

Integrated
with Eclipse

Visualizing Software Systems as Cities
Michele Lanza, University of Lugano

46

www.inf.usi.ch/faculty/lanza

Software Cities and Landscapes, software-cities.org
Claus Lewerentz, University of Technology Cottbus

47

Software Cities and Landscapes, software-cities.org
Claus Lewerentz, University of Technology Cottbus

48

Eclipse
JDK

18/03/2013

9

Software Cities and Landscapes, software-cities.org
Claus Lewerentz, University of Technology Cottbus

49

PBC, LSEdit,
www.swag.uwaterloo.ca/lsedit/index.html
Ric Holt, SWAG, Waterloo

50

Klocwork insight architect
www.klocwork.com/products/insight/architect-
code-visualization/index.php

51

State-of-the-art IDE:
 Customizable
 Extensible (plug-in architecture)
 Open source
 Powerful features:
◦ Refactoring, code assist, code folding, hot code

debugging, version control, task view, team
support, ….
◦ User interface: perspectives and views for

managing tools/features, excellent user interface
capabilities
◦ Many plug-ins, e.g. UML plug-ins

 Usability and cognitive support are key

52

Eclipse and visualization
Creole: Integration of SHriMP with Eclipse

18/03/2013

10

Imagix 4D

Supports:
◦ Reverse engineering
◦ Code quality metrics
◦ Documentation

Features
◦ Graph window
◦ Integrated source code browing

(Rigi like)

Imagix – Graph Window

Imagix – integrated source code
browsing Imagix – Metrics Tool

Imagix – Grep Tool Imagix – Flow Chart

18/03/2013

11

Issues to consider in software
visualization (SV)
1. Is SV a way into the expert mind or a way out of our usual world

view?

2. Why are experts often resistant to other people's visualisations?

3. Are visualizations trying to provide a representation that is more
abstract, or more concrete?

4. What model are we representing?

5. What kind of tasks are we supporting?

6. Are representations good for everyone? What is the importance
of individual skill and variation?

7. When are two representations better than one? …

8. Can I take a version to bed?

[Petre, Green]

61

