
22/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Lab attendance

◦ Has been a problem as of late — needs to change

◦ Several questions on labs on final exam

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Teaching evaluations
◦ Next week

 Marking
◦ A2 should be graded this week

◦ Midterm and A1 graded

◦ Marks posted

 Course website
◦ http://www.engr.uvic.ca/~seng371

◦ Lecture notes posted

◦ Lab slides and activities are posted

 Assignment 3
◦ Due Thu, April 4

◦ Part I — Define software evolution terms

◦ Part II — Investigate two AntiPatterns — Vendor-Lock-In — Analysis Paralysis

◦ Part III — Refactoring in IBM Eclipse and MS Visual Studio and Blob AntiPattern

◦ Cite your sources

◦ Submit by e-mail to seng371@uvic.ca

2

Reading Assignment
 Murphy, Notkin, Lan: An empirical study of static call graph

extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com

3

Software AntiPatterns

http://en.wikipedia.org/wiki/The_Comedy_of_Errors

5

Final Exam Questions
 How can you turn an AntiPattern into a good

solution?
 Describe the “Vendor-Lock-in” AntiPattern
 What are the main causes for AntiPatterns?
 What are the differences between

Development, Architecture, and Management
AntiPatterns?

 How can a design pattern evolve into an
AntiPattern?

6

Final Exam Questions …
 What are the symptoms or how can you

recognize the “Design by Committee”
AntiPattern?

 How are the “Vendor Lock-in” AntiPattern and
levels of indirection related?

 During software maintenance “analysis
paralysis” can occur. Describe this
phenomenon.

 Why is it useful for a software architect to
study AntiPatterns?

22/03/2013

2

7

Overview

 Motivation
 Reference model
 Software Development AntiPatterns
 Software Architecture AntiPatterns
 Software Management AntiPatterns
 Summary

8

References
 Brown, Malveau, McCormick III, Mowbray

AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis, John Wiley & Sons, 1998

 AntiPatterns Tutorial
by McCormick III, Mitre Corp.
◦ http://www.antipatterns.com/briefing/index.htm

 AntiPatterns web site
◦ http://www.antipatterns.com/

 Anti Patterns catalog
◦ http://c2.com/cgi/wiki?AntiPatternsCatalog

ht
tp

://
w

w
w

.a
nt

ip
at

te
rn

s.
co

m

9

The Origins: Design Patterns
 Gamma, Richard Helm, Ralph Johnson, John

Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1994).
The Gang of Four Book.

 Creational Patterns
◦ Singleton, factory, builder, …

 Structural Patterns
◦ Adapter, composite, façade, …

 Behavioral Patterns
◦ Visitor, observer, iterator, …

10

11

Origins of AntiPatterns
 The majority of published works in software

sciences have focused on positive and
constructive solutions

 AntiPatterns are derived by looking at the
negative solutions

 Def. An AntiPattern describes a commonly
occurring solution to a problem that generates
decidedly negative consequences.

 AntiPatterns are also called Bad Smells

12

Origins of AntiPatterns …
 A manager or developer
◦ does not know any better

◦ does not have sufficient knowledge or experience
solving a particular problem

◦ applied a perfectly good design pattern in the wrong
context

22/03/2013

3

AntiPatterns and Software Evolution

 AntiPatterns are particularly prevalent during
long-term software maintenance and evolution

 A software reengineer needs to assess the
presence or absence of AntiPatterns in a legacy
system to be able to implement the best
reengineering, maintenance or evolution
strategy

13

AntiPatterns and Software Evolution

 How do you compare/evaluate software
development job offers?

14

AntiPatterns and Software Evolution

 How do you compare/evaluate software
development job offers

 Premise
◦ Recognition of AntiPatterns will make you a

better software engineer

◦ Refactoring AntiPatterns present in a system
and/or project will result in a better, more
successful, less risky software reengineering
project

15 16

State of Affairs
 Five out of six software projects are considered

unsuccessful

 One third of all software projects are canceled

 For delivered systems the actual budget and
time is double than expected

 Silver bullets ...

Old Silver Bullets
 Structured programming
 Top-down design
 Open systems
 Client/server architectures
 Quality code generation from models
 Object orientation
 GUI builders
 Frameworks

17

New Silver Bullets
 Component technologies
 Distributed objects
 Business objects
 Patterns
 Software reuse
 Scripting languages
 Software agents
 Network-centric computing
 Web services (SOA, Grid, Cloud)
 XML
 Extreme Programming
 Refactoring

18

22/03/2013

4

19

AntiPattern Description Structure

 Description of the general form

 Symptoms on how to recognize the general form

 Causes that led to the general form

 Consequences of the general form

 Refactored solution on how to change the AntiPattern
into a healthier situation

20

AntiPatterns Purpose
 A method for efficiently mapping a general

situation to a specific class of solutions

 Provide real-world experience in recognizing
recurring problems in the software industry and
provide a detailed remedy for the most
common predicaments

 Provide a common vocabulary for identifying
problems and discussing solutions

21

AntiPattern Categories
 Development AntiPatterns
 Architectural AntiPatterns
 Management AntiPatterns

 AntiPatterns apply to software construction
as well as software evolution

 Anti Patterns catalog
◦ http://c2.com/cgi/wiki?AntiPatternsCatalog

22

AntiPattern Lava Flow
A first example

 Problem
◦ Dead-code and forgotten design information is frozen

in an ever-changing design

◦ Oh that! Well Ray and Emil (they’re no longer with
the company) wrote that routine back when Jim (who
left last month) was trying a workaround for Irene’s
input processing code (she’s in another department
now).

23

Lava Flow …
 Problem
◦ Lead engineer left

◦ New lead had better approach but was nervous about
deleting stuff until he was more familiar with the code

◦ Each volcanic eruption
leaves lava streams
 DDE leveraged
 OLE1, OLE2
 Support for CORBA
 Support for JavaBeans
 Support for mobile devices

24

Lava Flow …

 Causes
◦ R&D code moved to production with CM
◦ Uncontrolled distribution of unfinished or

unpolished code
◦ Trial approaches have not been eliminated

from the code
◦ Architectural scars due to old middleware

22/03/2013

5

25

Lava Flow …

 Solution
◦ Configuration management system which

identifies and eliminates dead code
◦ Evolve or refactor design
◦ Sound architecture review must proceed

production code development
◦ Establish stable system level interfaces

26

Swiss Army Knife or Kitchen Sink

 Problem
◦ Excessively complex class interface
◦ Designer attempts to provide for all possible

uses of the class
◦ Complicated interface
◦ Many overloaded names
◦ Excessive regression test suites
◦ Several Swiss Army Knifes in a single design

27

Swiss Army Knife or Kitchen Sink

 Refactored solution
◦ Provide guidelines for

using complicated
standards or interfaces

◦ Provide a template for
exception handling

◦ Contract interfaces

Group Assignment
An AntiPattern “Comedy of Errors” (Play)
 Groups of 4 students

 Pick an AntiPattern

 Develop a play to
enact the AntiPattern

 Perform the play in class next week
◦ Make sure all group members are involved—ideally equally
◦ Include props if need be
◦ Practice the play (!)
◦ 5 mins for play

28
http://en.wikipedia.org/wiki/The_Comedy_of_Errors

Pick your play to be performed
 Reinvent the Wheel
◦ Mon: Morgan, Nic, Vish, Marcelo

 Design By Committee
◦ Mon: Michael, Y, Sam, Mackenzie

 Mushroom Management
◦ Mon: Daniel, Brad, Dave, George

 Boat Anchor
 Stovepipe
 Architecture By Implication
 Warm Bodies
 Swiss Army Knife
 Spaghetti Code
 Blob
 Wolf Ticket

 Corncob
◦ Thu: Geoff, Adam, Scott, Justin

 Golden Hammer
◦ Thu: Rob, Ian, Kai, Saleh

 Walking through a Minefield
◦ Thu: Jordan, Amanda, Brandon,

Romil
 Poltergeists
◦ Thu: Curtis, Mikko, Paul, Allan

 The Grand Old Duke of York
 Dead End
 Cut-and-Paste Programming
 Death by Planning

29

