
28/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Labs

◦ One more lab this week

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Last lecture
◦ Thu, April 4
◦ Review and wrap-up

 Today
◦ AntiPattern plays
◦ Teaching evaluations

 Marking
◦ A2 marks are posted

 Assignment 3
◦ Due Thu, April 4
◦ Part I — Define software evolution terms
◦ Part II — Investigate two AntiPatterns —Vendor-Lock-In — Analysis Paralysis
◦ Part III — Refactoring in IBM Eclipse and MS Visual Studio and Blob AntiPattern
◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Reading Assignment
 Murphy, Notkin, Lan: An empirical study of static call graph

extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com

3

Software AntiPatterns

http://en.wikipedia.org/wiki/The_Comedy_of_Errors

5

Overview

 Motivation
 Reference model
 Software Development AntiPatterns
 Software Architecture AntiPatterns
 Software Management AntiPatterns
 Summary

AntiPatterns and Software Evolution

 How do you compare/evaluate software
development job offers

 Premise
◦ Recognition of AntiPatterns will make you a

better software engineer

◦ Refactoring AntiPatterns present in a system
and/or project will result in a better, more
successful, less risky software reengineering
project

6

28/03/2013

2

7

AntiPattern Categories
 Development AntiPatterns
◦ LavaFlow, BoatAnchor, GoldenHammer, Poltergeists, SpaghettiCode,

Blob, VendorLockIn, WalkingThroughaMineField
 Architectural AntiPatterns
◦ SwissArmyKnife, DesignByCommittee, StovePipe, ReinventTheWheel

 Management AntiPatterns
◦ AnalysisParalysis, Corncob, DeathByPlanning, MushroomManagement

 AntiPatterns apply to software construction as well as software
evolution

 Anti Patterns catalog
◦ http://c2.com/cgi/wiki?AntiPatternsCatalog

Group Assignment
An AntiPattern “Comedy of Errors” (Play)
 Groups of 4 students

 Pick an AntiPattern

 Develop a play to
enact the AntiPattern

 Perform the play in class next week
◦ Make sure all group members are involved—ideally equally
◦ Include props if need be
◦ Practice the play (!)
◦ 5 mins for play

8
http://en.wikipedia.org/wiki/The_Comedy_of_Errors

Pick your play to be performed
 Reinvent the Wheel
◦ Mon: Morgan, Nic, Vish, Marcelo

 Design By Committee
◦ Mon: Michael, Y, Sam, Mackenzie

 Mushroom Management
◦ Mon: Daniel, Brad, Dave, George

 Boat Anchor
 Stovepipe
 Architecture By Implication
 Warm Bodies
 Swiss Army Knife
 Spaghetti Code
 Blob
 Wolf Ticket

 Corncob
◦ Thu: Geoff, Adam, Scott, Justin

 Golden Hammer
◦ Thu: Rob, Ian, Kai, Saleh

 Walking through a Minefield
◦ Thu: Jordan, Amanda, Brandon,

Romil
 Poltergeists
◦ Thu: Curtis, Mikko, Paul, Allan

 The Grand Old Duke of York
 Dead End
 Cut-and-Paste Programming
 Death by Planning

9 10

11

AntiPatterns
 A method for efficiently mapping a general

situation to a specific class of solutions
 Provide real-world experience in recognizing

recurring problems in the software industry and
provide a detailed remedy for the most
common predicaments

 Provide a common vocabulary for identifying
problems and discussing solutions

Design Pattern
 Problem
◦ Context

◦ Applicable design forces

 The role of the solution
◦ To resolve the design forces to generate some benefits,

consequences, and follow-on problems

 Must occur at least three times

12

28/03/2013

3

Template

 A consistent outline for the pattern
documentation that ensures consistent
and adequate coverage of the solution,
design forces, and other consequences

 Justification of the pattern
and prediction of its

consequences

13 14

Essence of an AntiPattern

 Two solutions instead of a problem and a
solution
◦ Problematic solution which generates negative

consequences
◦ Refactored solution, a method to resolve and

reengineer the AntiPattern

 A pattern in an inappropriate context

15

Relation between
Patterns and AntiPatterns
 Design patterns often evolve into an

AntiPattern
 Procedural programming was a great

design pattern in the 60’s and 70’s
 Today it is an AntiPattern
 Object-oriented programming is today a

practiced pattern ...

16

Relation between
Patterns and AntiPatterns

Context and Forces

Problem

Solution

Benefits

Consequences

Related Solutions

Benefits

Consequences

Related Solutions

Symptoms Consequences

Context and Forces

AntiPattern Solution

Refactored Solution

http://www.antipatterns.com/
briefing/sld006.htm

Refactoring: A Useful AntiPattern

 An approach for evolving the solution
into a better one

 This process of change, migration, or
evolution is called refactoring in the
AntiPattern community

17

Reference Model
 Root causes
◦ provide fundamental context for the AntiPattern

 Primal forces
◦ are the key motivators for decision making

 Software design-level model
◦ define architectural scales;

each pattern has a most
applicable scale

18

28/03/2013

4

19

Root Causes
 Haste
◦ hasty decisions compromise quality
◦ code that appears to work is acceptable
◦ testing is ignored

 Apathy
◦ lack of partitioning
◦ ignoring the separation of concerns (e.g.,

stable vs. replaceable design)

20

Root Causes …
 Narrow-mindedness
◦ refusal of known or accepted solutions
◦ reluctance to use metadata

 Sloth
◦ poor decision based on an easy answer
◦ frequent interface changes
◦ lack of configuration control
◦ reliance on generating stubs and skeletons

21

Root causes …

 Avarice
◦ architectural avarice—modeling of excessive

details
◦ excessive complexity due to insufficient

abstraction
◦ overly complex systems are difficult to

develop, integrate, test, maintain, extend

22

Root Causes …

 Ignorance
◦ failing to seek understanding
◦ antonym of analysis paralysis
◦ focussing on code interfaces rather than

system interfaces
◦ no layering
◦ no levels of indirection
◦ no wrapping to isolate details

23

Root Causes …

 Pride
◦ not-invented-here syndrome
◦ unnecessary invention of new designs
◦ reinventing the wheel
◦ rewrite from scratch
◦ ignoring requirements
◦ ignoring COTS, freeware, existing legacy

system

24

Forces
 Forces or concerns that exist within a

decision-making process
 Forces that are addressed lead to benefits
 Forces that remain unresolved lead to

consequences
 For any given software problem there are

a number of forces that can influence a
given solution

28/03/2013

5

25

Forces …
 Vertical forces
◦ Domain specific

◦ Unique to a particular situation

 Horizontal or primal forces
◦ Applicable across multiple domains

◦ Influence design and reengineering choice across
several software modules and components

◦ Choices made elsewhere may impact local choices

26

Primal Forces

 Horizontal forces are called primal forces
 Present in nearly all design or

reengineering situations
 Keep architecture and development on

track or synchronized
 A fundamental value system for software

architects

27

Primal Forces …
 Management of functionality
◦ Meeting the requirements

 Management of performance
◦ Meeting required speed and operation

 Management of complexity
◦ Defining abstractions

 Management of change
◦ Controlling the evolution of the software

 Management of IT resources
◦ People and IT artifacts

 Management of technology
◦ Controlling technology evolution

28

AntiPattern ViewPoints

 Developer
◦ Situations encountered by programmers
◦ http://www.antipatterns.com/briefing/sld012.htm

 Architect
◦ Common problems in system structure
◦ http://www.antipatterns.com/briefing/sld014.htm

 Manager
◦ Affect people in all software roles
◦ http://www.antipatterns.com/briefing/sld016.htm

Gof4 patterns
Creational
Structural
Behavioral

Software Development AntiPatterns

 The Blob
 Continuous obsolescence
 Lava Flow
 Ambiguous viewpoint
 Functional decomposition
 Poltergeists
 Boat Anchor

29

Software Development AntiPatterns

 Golden Hammer
 Dead End
 Spaghetti Code
 Input Kludge
 Walking through a Minefield
 Cut-and-Paste Programming
 Mushroom Management

30

28/03/2013

6

31

The Blob

 Problem
◦ Procedural style design leads to one object

with a lion’s share of the responsibilities
◦ Most other objects only hold data
◦ This is the class that is really the heart of our

architecture
◦ One class monopolizes the processing and

the others encapsulate data

32

The Blob

 Causes
◦ Lack of an object-oriented architecture
◦ Lack of architecture enforcement
◦ Procedural design expert are chief architects
◦ Wrapping a legacy system results

in a Blob … acceptable

33

The Blob …

 Solution
◦ Distribute responsibilities more uniformly
◦ Isolate the effect of changes (encapsulation)
◦ Identify or categorize attributes and

operations
◦ Find “natural homes” for the identified classes
◦ Remove outliers

