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Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Labs

◦ One more lab this week

 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Last lecture
◦ Thu,  April 4
◦ Review and wrap-up

 Today
◦ AntiPattern plays
◦ Teaching evaluations

 Marking
◦ A2 marks are posted

 Assignment 3
◦ Due Thu, April 4
◦ Part I — Define software evolution terms
◦ Part II — Investigate two AntiPatterns —Vendor-Lock-In — Analysis Paralysis
◦ Part III — Refactoring in IBM Eclipse and MS Visual Studio and Blob AntiPattern
◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca
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Reading Assignment
 Murphy, Notkin, Lan:  An empirical study of static call graph 

extractors, ACM Transactions on Software Engineering and Methodology 
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong:  Reverse Engineering: A 
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program 
comprehension: past, present and future, Software Quality Journal 
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring 
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com
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Software AntiPatterns

http://en.wikipedia.org/wiki/The_Comedy_of_Errors
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Overview

 Motivation
 Reference model
 Software Development AntiPatterns
 Software Architecture AntiPatterns
 Software Management AntiPatterns
 Summary

AntiPatterns and Software Evolution

 How do you compare/evaluate software 
development job offers

 Premise
◦ Recognition of AntiPatterns will make you a 

better software engineer

◦ Refactoring AntiPatterns present in a system 
and/or project will result in a better, more 
successful, less risky software reengineering 
project
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AntiPattern Categories
 Development AntiPatterns
◦ LavaFlow, BoatAnchor, GoldenHammer, Poltergeists,  SpaghettiCode, 

Blob, VendorLockIn, WalkingThroughaMineField
 Architectural AntiPatterns
◦ SwissArmyKnife, DesignByCommittee, StovePipe, ReinventTheWheel

 Management AntiPatterns
◦ AnalysisParalysis, Corncob, DeathByPlanning, MushroomManagement

 AntiPatterns apply to software construction as well as software 
evolution

 Anti Patterns catalog
◦ http://c2.com/cgi/wiki?AntiPatternsCatalog

Group Assignment
An AntiPattern “Comedy of Errors” (Play)
 Groups of 4 students

 Pick an AntiPattern

 Develop a play to 
enact the AntiPattern

 Perform the play in class next week
◦ Make sure all group members are involved—ideally equally
◦ Include props if need be
◦ Practice the play (!)
◦ 5 mins for play
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http://en.wikipedia.org/wiki/The_Comedy_of_Errors

Pick your play to be performed
 Reinvent the Wheel
◦ Mon: Morgan, Nic, Vish, Marcelo

 Design By Committee
◦ Mon: Michael, Y, Sam, Mackenzie

 Mushroom Management
◦ Mon: Daniel, Brad, Dave, George

 Boat Anchor
 Stovepipe
 Architecture By Implication
 Warm Bodies
 Swiss Army Knife
 Spaghetti Code
 Blob
 Wolf Ticket

 Corncob
◦ Thu: Geoff, Adam, Scott, Justin

 Golden Hammer
◦ Thu: Rob, Ian, Kai, Saleh

 Walking through a Minefield
◦ Thu: Jordan,  Amanda, Brandon, 

Romil
 Poltergeists
◦ Thu: Curtis, Mikko, Paul,  Allan

 The Grand Old Duke of York
 Dead End
 Cut-and-Paste Programming
 Death by Planning
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AntiPatterns
 A method for efficiently mapping a general 

situation to a specific class of solutions
 Provide real-world experience in recognizing 

recurring problems in the software industry and 
provide a detailed remedy for the most 
common predicaments

 Provide a common vocabulary for identifying 
problems and discussing solutions

Design Pattern
 Problem
◦ Context

◦ Applicable design forces

 The role of the solution
◦ To resolve the design forces to generate some benefits, 

consequences, and follow-on problems

 Must occur at least three times
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 A consistent outline for the pattern 
documentation that ensures consistent 
and adequate coverage of the solution, 
design forces, and other consequences

 Justification of the pattern
and prediction of its 

consequences
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Essence of an AntiPattern

 Two solutions instead of a problem and a 
solution
◦ Problematic solution which generates negative 

consequences
◦ Refactored solution, a method to resolve and 

reengineer the AntiPattern

 A pattern in an inappropriate context
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Relation between
Patterns and AntiPatterns
 Design patterns often evolve into an 

AntiPattern
 Procedural programming was a great 

design pattern in the 60’s and 70’s
 Today it is an AntiPattern
 Object-oriented programming is today a 

practiced pattern ...
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Relation between
Patterns and AntiPatterns

Context and Forces

Problem

Solution

Benefits

Consequences

Related Solutions

Benefits

Consequences

Related Solutions

Symptoms Consequences

Context and Forces

AntiPattern Solution

Refactored Solution

http://www.antipatterns.com/
briefing/sld006.htm

Refactoring: A Useful AntiPattern

 An approach for evolving the solution 
into a better one

 This process of change, migration, or 
evolution is called refactoring in the 
AntiPattern community
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Reference Model
 Root causes
◦ provide fundamental context for the AntiPattern

 Primal forces
◦ are the key motivators for decision making

 Software design-level model
◦ define architectural scales; 

each pattern has a most
applicable scale
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Root Causes
 Haste
◦ hasty decisions compromise quality
◦ code that appears to work is acceptable
◦ testing is ignored

 Apathy
◦ lack of partitioning
◦ ignoring the separation of concerns (e.g., 

stable vs. replaceable design)
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Root Causes …
 Narrow-mindedness
◦ refusal of known or accepted solutions
◦ reluctance to use metadata

 Sloth
◦ poor decision based on an easy answer
◦ frequent interface changes
◦ lack of configuration control
◦ reliance on generating stubs and skeletons
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Root causes …

 Avarice
◦ architectural avarice—modeling of excessive 

details
◦ excessive complexity due to insufficient 

abstraction
◦ overly complex systems are difficult to 

develop, integrate, test, maintain, extend
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Root Causes …

 Ignorance
◦ failing to seek understanding
◦ antonym of analysis paralysis
◦ focussing on code interfaces rather than 

system interfaces
◦ no layering
◦ no levels of indirection
◦ no wrapping to isolate details
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Root Causes …

 Pride
◦ not-invented-here syndrome
◦ unnecessary invention of new  designs
◦ reinventing the wheel
◦ rewrite from scratch
◦ ignoring requirements
◦ ignoring COTS, freeware, existing legacy 

system
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Forces
 Forces or concerns that exist within a 

decision-making process
 Forces that are addressed lead to benefits
 Forces that remain unresolved lead to 

consequences
 For any given software problem there are 

a number of forces that can influence a 
given solution
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Forces …
 Vertical forces
◦ Domain specific

◦ Unique to a particular situation

 Horizontal or primal forces
◦ Applicable across multiple domains

◦ Influence design and reengineering choice across 
several software modules and components

◦ Choices made elsewhere may impact local choices
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Primal Forces

 Horizontal forces are called primal forces
 Present in nearly all design or 

reengineering situations
 Keep architecture and development on 

track or synchronized
 A fundamental value system for software 

architects
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Primal Forces …
 Management of functionality
◦ Meeting the requirements

 Management of performance
◦ Meeting required speed and operation

 Management of complexity
◦ Defining abstractions

 Management of change
◦ Controlling the evolution of the software

 Management of IT resources
◦ People and IT artifacts

 Management of technology
◦ Controlling technology evolution
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AntiPattern ViewPoints

 Developer
◦ Situations encountered by programmers
◦ http://www.antipatterns.com/briefing/sld012.htm

 Architect
◦ Common problems in system structure
◦ http://www.antipatterns.com/briefing/sld014.htm

 Manager
◦ Affect people in all software roles
◦ http://www.antipatterns.com/briefing/sld016.htm

Gof4 patterns
Creational
Structural
Behavioral

Software Development AntiPatterns

 The Blob
 Continuous obsolescence
 Lava Flow
 Ambiguous viewpoint
 Functional decomposition
 Poltergeists
 Boat Anchor
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Software Development AntiPatterns

 Golden Hammer
 Dead End
 Spaghetti Code
 Input Kludge
 Walking through a Minefield
 Cut-and-Paste Programming
 Mushroom Management
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The Blob

 Problem
◦ Procedural style design leads to one object 

with a lion’s share of the responsibilities
◦ Most other objects only hold data
◦ This is the class that is really the heart of our 

architecture
◦ One class monopolizes the processing and 

the others encapsulate data
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The Blob

 Causes
◦ Lack of an object-oriented architecture
◦ Lack of architecture enforcement
◦ Procedural design expert are chief architects
◦ Wrapping a legacy system results

in a Blob … acceptable
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The Blob …

 Solution
◦ Distribute responsibilities more uniformly
◦ Isolate the effect of changes (encapsulation)
◦ Identify or categorize attributes and 

operations
◦ Find “natural homes” for the identified classes
◦ Remove outliers


