Welcome to SENG 371

Software Evolution

Spring 2013

A Core Course of the BSEng Program
Hausi A. Miiller, PhD PEng

Professor, Department of Computer Science

Associate Dean Research, Faculty of Engineering
University of Victoria

28/03/2013

Announcements

Labs

One more lab this week

+ Final exam

Sat, April 13 — 7:00 -10:00 pm

+ Lastlecture

Th, April 4
Review and wrap-up

.+ Today

AntiPattern plays
Teaching evaluations
Marking
A2 marks are posted
Assignment 3
Due Thu, April 4
Part | — Define software evolution terms
Part Il — Investigate two AntiPatterns — Vendor-Lock-In — Analysis Paralysis
Part Ill — Refactoring in IBM Eclipse and MS Visual Studio and Blob AntiPattern
Cite your sources
Submit by e-mail to

Reading Assignment

¢ Murphy, Notkin, Lan: An empirical study of static call graph
extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)

Miiller; Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)

Storey:Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)

Brown, Malveau, McCormick Ill, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

AntiPatterns Tutorial and Website

Software AntiPatterns

http://en.wikipedia.org/wiki/The_Comedy_of_Errors

Overview

» Motivation

 Reference model

e Software Development AntiPatterns
« Software Architecture AntiPatterns

« Software Management AntiPatterns

e Summary

AntiPatterns and Software Evolution

How do you compare/evaluate software
development job offers

Premise

> Recognition of AntiPatterns will make you a
better software engineer

o Refactoring AntiPatterns present in a system
and/or project will result in a better, more
successful, less risky software reengineering
project




AntiPattern Categories

¢ Development AntiPatterns

o LavaFlow, BoatAnchor, GoldenHammer, Poltergeists, SpaghettiCode,
Blob,VendorLockIn, WalkingThroughaMineField

¢ Architectural AntiPatterns

> SwissArmyKnife, DesignByCommittee, StovePipe, ReinventTheWheel
¢ Management AntiPatterns

> AnalysisParalysis, Corncob, DeathByPlanning, MushroomManagement

¢ AntiPatterns apply to software construction as well as software
evolution

« Anti Patterns catalog

28/03/2013

Group Assignment
An AntiPattern “Comedy of Errors” (Play)

¢ Groups of 4 students
¢ Pick an AntiPattern

¢ Develop a play to
enact the AntiPattern

o Perform the play in class next week
> Make sure all group members are involved—ideally equally
Include props if need be
Practice the play (!)
> 5 mins for play

http://en.wikipedia.org/wiki/The_Comedy_of_Errors

Pick your play to be performed

¢ Reinvent the Wheel ¢ Corncob
Mon: Morgan, Nic,Vish, Marcelo Thu: Geoff, Adam, Scott, Justin
¢ Design By Committee ¢ Golden Hammer
Mon: Michael,Y, Sam, Mackenzie Thu: Rob, lan, Kai, Saleh
¢ Mushroom Management ¢ Walking through a Minefield
Mon: Daniel, Brad, Dave, George Thu: Jordan, Amanda, Brandon,
* Boat Anchor Romil
« Stovepipe ¢ Poltergeists

Thu: Curtis, Mikko, Paul, Allan
The Grand Old Duke of York
Dead End
Cut-and-Paste Programming
Death by Planning

¢ Architecture By Implication
¢ Warm Bodies

* Swiss Army Knife

* Spaghetti Code

* Blob

* WolfTicket

AntiPatterns

* A method for efficiently mapping a general
situation to a specific class of solutions

* Provide real-world experience in recognizing
recurring problems in the software industry and
provide a detailed remedy for the most
common predicaments

¢ Provide a common vocabulary for identifying
problems and discussing solutions

Design Pattern

¢ Problem
= Context
= Applicable design forces
¢ The role of the solution

> To resolve the design forces to generate some benefits,
consequences, and follow-on problems- @~

¢ Must occur at least three times




Template

¢ A consistent outline for the pattern
documentation that ensures consistent
and adequate coverage of the solution,
design forces, and other consequences
* Justification of the pattern
and prediction of its
consequences

Relation between
Patterns and AntiPatterns

« Design patterns often evolve into an
AntiPattern

¢ Procedural programming was a great
design pattern in the 60’s and 70’s
e Today it is an AntiPattern

» Object-oriented programming is today a
practiced pattern ...

28/03/2013

Essence of an AntiPattern

* Two solutions instead of a problem and a
solution

° Problematic solution which generates negative
consequences

o Refactored solution, a method to resolve and
reengineer the AntiPattern

e A pattern in an inappropriate context

Relation between
Patterns and AntiPatterns

_ http://www.antipatterns.com/

briefing/sld006.htm

Refactoring: A Useful AntiPattern

* An approach for evolving the solution
into a better one

e This process of change, migration, or
evolution is called refactoring in the
AntiPattern community

Reference Model

¢ Root causes

o provide fundamental context for the AntiPattern

* Primal forces

> are the key motivators for decision making

» Software design-level model

o define architectural scales;
each pattern has a most
applicable scale




Root Causes

e Haste
> hasty decisions compromise quality
> code that appears to work is acceptable
° testing is ignored
e Apathy
> lack of partitioning

> ignoring the separation of concerns (e.g.,
stable vs. replaceable design)

28/03/2013

Root Causes ...

¢ Narrow-mindedness
o refusal of known or accepted solutions
> reluctance to use metadata
e Sloth
o poor decision based on an easy answer
° frequent interface changes
> lack of configuration control
° reliance on generating stubs and skeletons

Root causes ...

* Avarice

> architectural avarice—modeling of excessive
details

o excessive complexity due to insufficient
abstraction

> overly complex systems are difficult to
develop, integrate, test, maintain, extend

Root Causes ...

e Ignorance
> failing to seek understanding
° antonym of analysis paralysis

o focussing on code interfaces rather than
system interfaces

° no layering
° no levels of indirection
° no wrapping to isolate details

Root Causes ...

¢ Pride
° not-invented-here syndrome
° unnecessary invention of new designs
° reinventing the wheel
° rewrite from scratch
° ignoring requirements

ignoring COTS, freeware, existing legacy
system

Forces

» Forces or concerns that exist within a
decision-making process

e Forces that are addressed lead to benefits

» Forces that remain unresolved lead to
consequences

* For any given software problem there are
a number of forces that can influence a
given solution




Forces ...

¢ Vertical forces
> Domain specific
= Unique to a particular situation
* Horizontal or primal forces
> Applicable across multiple domains

> Influence design and reengineering choice across
several software modules and components

> Choices made elsewhere may impact local choices

28/03/2013

Primal Forces

» Horizontal forces are called primal forces
e Present in nearly all design or
reengineering situations

¢ Keep architecture and development on
track or synchronized

¢ A fundamental value system for software
architects

Primal Forces ...

¢ Management of functionality
Meeting the requirements

¢ Management of performance

= Meeting required speed and operation
* Management of complexity

> Defining abstractions
¢ Management of change

= Controlling the evolution of the software
¢ Management of IT resources

= People and IT artifacts
¢ Management of technology

= Controlling technology evolution

AntiPattern ViewPoints ey

Creational
Structural

e Developer Behavioral

o Situations encountered by programmers

» Architect

> Common problems in system structure

e Manager

> Affect people in all software roles

Software Development AntiPatterns

e The Blob

¢ Continuous obsolescence
e Lava Flow

* Ambiguous viewpoint

e Functional decomposition
e Poltergeists

 Boat Anchor

Software Development AntiPatterns

¢ Golden Hammer

e Dead End

e Spaghetti Code

¢ Input Kludge

e Walking through a Minefield
¢ Cut-and-Paste Programming
¢ Mushroom Management




28/03/2013

The Blob The Blob

« Problem e Causes
> Procedural style design leads to one object o Lack of an object-oriented architecture
with a lion’s share of the responsibilities o Lack of architecture enforcement
° Most other objects only hold data > Procedural design expert are chief architects
> This is the class that is really the heart of our ° Wrapping a legacy system results
architecture in a Blob ... acceptable

> One class monopolizes the processing and
the others encapsulate data

The Blob ...

e Solution
> Distribute responsibilities more uniformly
> Isolate the effect of changes (encapsulation)

> ldentify or categorize attributes and
operations

° Find “natural homes” for the identified classes
> Remove outliers




