
28/03/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Final exam

◦ Sat, April 13 — 7:00 -10:00 pm

 Last lecture
 No lecture on Monday due to Easter break

◦ Thu, April 4
◦ Review and wrap-up

 Today
◦ AntiPattern plays
◦ Turn in eval forms at the end of lecture

 Marking
◦ A2 marks are posted

 Assignment 3
◦ Due Thu, April 4
◦ Part I — Define software evolution terms
◦ Part II — Investigate two AntiPatterns —Vendor-Lock-In — Analysis Paralysis
◦ Part III — Refactoring in IBM Eclipse and MS Visual Studio and Blob AntiPattern
◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

Setting the stage
 Suppose we could turn back time to 1968.

It so happens that the first software engineering
conference was held in 1968 in Garmisch
Partenkirchen in Germany. The term software
engineering was coined at that conference.

 Given what you know now about the software
industry and everything you learned in this course
—and all other university courses — what advice
would you give to these pioneers?

 Chances are that the advice you would give to
these pioneers then would still be valid today.
The premise is that if we follow your advice today,
chances are we will be better off in the future.

3

Group Assignment
What advice would you give?

 Address the following
topics
◦ Software evolution

◦ Software engineering
education

◦ Software architecture

◦ Program understanding

 Topic selection
◦ Select 2 of these topics

◦ Select one topic of your own

 Group assignment
◦ Break up in groups of 3-4
◦ Select reporter and facilitator
◦ Pick three topics (see left)
◦ Arrange to meet outside class
◦ Facilitator directs discussion and

keeps time
◦ Reporter records findings and

presents the findings to the class
(3 mins only!)

◦ Turn in three slides with findings in
point form for posting

◦ Write all students names on each
slide

◦ Presentation (3 mins only)
next Thu

4

Please give advice !!
You might change history!!

Reading Assignment
 Murphy, Notkin, Lan: An empirical study of static call graph

extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com

5

Software AntiPatterns

http://en.wikipedia.org/wiki/The_Comedy_of_Errors

28/03/2013

2

Group Assignment
An AntiPattern “Comedy of Errors” (Play)
 Groups of 4 students

 Pick an AntiPattern

 Develop a play to
enact the AntiPattern

 Perform the play in class next week
◦ Make sure all group members are involved—ideally equally
◦ Include props if need be
◦ Practice the play (!)
◦ 5 mins for play

7
http://en.wikipedia.org/wiki/The_Comedy_of_Errors

Pick your play to be performed
 Reinvent the Wheel
◦ Mon: Morgan, Nic, Vish,

Marcelo
 Design By Committee
◦ Mon: Michael, Y, Sam,

Mackenzie
 Mushroom Management
◦ Mon: Daniel, Brad, Dave,

George

 Corncob
◦ Thu: Geoff, Adam, Scott,

Justin
 Golden Hammer
◦ Thu: Rob, Ian, Kai, Saleh

 Walking through a
Minefield
◦ Thu: Jordan, Amanda,

Brandon, Romil
 Poltergeists
◦ Thu: Curtis, Mikko, Paul,

Allan
 Spaghetti Code
◦ Thu: Jeremy, Anita, Wes

8

9 10

Relation between
Patterns and AntiPatterns

Context and Forces

Problem

Solution

Benefits

Consequences

Related Solutions

Benefits

Consequences

Related Solutions

Symptoms Consequences

Context and Forces

AntiPattern Solution

Refactored Solution

http://www.antipatterns.com/
briefing/sld006.htm

Refactoring
Turn AntiPattern into a Useful Pattern
 An approach for evolving the solution

into a better one
 This process of change, migration, or

evolution is called refactoring in the
AntiPattern community

11

Reference Model
 Root causes
◦ provide fundamental context for the AntiPattern

 Primal forces
◦ are the key motivators for decision making

 Software design-level model
◦ define architectural scales;

each pattern has a most
applicable scale

12

28/03/2013

3

13

Root Causes
 Haste
◦ hasty decisions compromise quality
◦ code that appears to work is acceptable
◦ testing is ignored

 Apathy
◦ lack of partitioning
◦ ignoring the separation of concerns (e.g.,

stable vs. replaceable design)

14

Root Causes …
 Narrow-mindedness
◦ refusal of known or accepted solutions
◦ reluctance to use metadata

 Sloth
◦ poor decision based on an easy answer
◦ frequent interface changes
◦ lack of configuration control
◦ reliance on generating stubs and skeletons

15

Forces …
 Vertical forces
◦ Domain specific

◦ Unique to a particular situation

 Horizontal or primal forces
◦ Applicable across multiple domains

◦ Influence design and reengineering choice across
several software modules and components

◦ Choices made elsewhere may impact local choices

16

Primal Forces …
 Management of functionality
◦ Meeting the requirements

 Management of performance
◦ Meeting required speed and operation

 Management of complexity
◦ Defining abstractions

 Management of change
◦ Controlling the evolution of the software

 Management of IT resources
◦ People and IT artifacts

 Management of technology
◦ Controlling technology evolution

17

AntiPattern ViewPoints

 Developer
◦ Situations encountered by programmers
◦ http://www.antipatterns.com/briefing/sld012.htm

 Architect
◦ Common problems in system structure
◦ http://www.antipatterns.com/briefing/sld014.htm

 Manager
◦ Affect people in all software roles
◦ http://www.antipatterns.com/briefing/sld016.htm

Gof4 patterns
Creational
Structural
Behavioral

Software Development AntiPatterns

 The Blob
 Continuous obsolescence
 Lava Flow
 Ambiguous viewpoint
 Functional decomposition
 Poltergeists
 Boat Anchor

18

28/03/2013

4

Software Development AntiPatterns

 Golden Hammer
 Dead End
 Spaghetti Code
 Input Kludge
 Walking through a Minefield
 Cut-and-Paste Programming
 Mushroom Management

19 20

The Blob

 Problem
◦ Procedural style design leads to one object

with a lion’s share of the responsibilities
◦ Most other objects only hold data
◦ This is the class that is really the heart of our

architecture
◦ One class monopolizes the processing and

the others encapsulate data

21

The Blob

 Causes
◦ Lack of an object-oriented architecture
◦ Lack of architecture enforcement
◦ Procedural design expert are chief architects
◦ Wrapping a legacy system results

in a Blob … acceptable

22

The Blob …

 Solution
◦ Distribute responsibilities more uniformly
◦ Isolate the effect of changes (encapsulation)
◦ Identify or categorize attributes and

operations
◦ Find “natural homes” for the identified classes
◦ Remove outliers

23

Continuous Obsolescence
 Problem
◦ Technology is changing rapidly

◦ Developers have difficulty keeping up

◦ Product releases don’t work together

 Solution
◦ Open systems standards

◦ Use consortium standards since they represent
industry consensus

◦ Stable system interfaces to separate concerns

◦ Open source

24

Ambiguous Viewpoint
 Problem
◦ Old OOA&D models and methods often do

not explain their viewpoint
 Object oriented analysis and design

◦ Often implementation view—least useful
 Solution
◦ Provide different viewpoints
◦ Separation of concerns
◦ Interfaces, db, application code
◦ 14 diagram types in UML 2+

28/03/2013

5

25

Functional Decomposition
 Problem
◦ Result of experienced, non-oo developers
◦ Procedural design in an oo language
◦ Class-based versus object-oriented code
◦ Complex and clever code
◦ Function-centric design as opposed to balanced

approach function/data-centric

 Solution
◦ Object-oriented redesign
◦ Package data and methods
◦ Separation of concerns

26

Poltergeists

 Problem
◦ Classes with limited roles or life cycles
◦ Start a process for another object
◦ Short-lived objects

 Solution
◦ Refactor into longer-lived objects
◦ Package data and methods

27

Boat Anchor

 Problem
◦ A piece of software that does not serve a

useful purpose on the current project
◦ A costly acquisition which management is

reluctant to let go

 Solution
◦ Ditch the anchor

28

Golden Hammer
 Problem
◦ A familiar and proven technology or concept

that is applied obsessively to many software
problems (e.g., MVC)

 Solution
◦ Expand the knowledge of developers through

courses, training, books
◦ Expose developers to alternative technologies

and approaches

29

Dead End

 Problem
◦ Modifying a reusable component even if it is

no longer maintained or supported by the
supplier
◦ Amount of maintenance increases significantly
◦ Dead code

 Solution
◦ Outsource maintenance rather than import

maintenance

30

Spaghetti Code

 Problem
◦ Most famous AntiPattern
◦ Many complexity measure have been invented to

assess it
◦ Common for programmer who cannot abstract
 Large interfaces, many parameters,

◦ Not very common in industrial projects
 More of a myth than anything else

 Solution
◦ Many automatic tools available

28/03/2013

6

31

Object-oriented Spaghetti Code

 Many methods with no parameters
 Suspicious class or global variables
 Intertwined and unforeseen relationships

among objects
 Process-oriented methods, object with

process-oriented names
 Inheritance and polymorphism cannot be

used to extend the system

32

Cute and Paste Programming
or Cloning
 Problem
◦ Software clones
◦ “Hey, I thought you fixed that bug already, so

why is it doing this again?”
◦ “Wow, you guys work fast. Over 400KLOC in

three weeks is amazing!”
◦ Degenerate form of reuse
◦ Very common in COBOL

33

Cute and Paste Programming
or Cloning
 Solution
◦ Clone detection
◦ Parameterize types
◦ Introduce an additional level of indirection
◦ Exploit polymorphism
◦ Dynamic schemas

34

AntiPattern ViewPoints

 Developer
◦ Situations encountered by programmers
◦ http://www.antipatterns.com/briefing/sld012.htm

 Architect
◦ Common problems in system structure
◦ http://www.antipatterns.com/briefing/sld014.htm

 Manager
◦ Affect people in all software roles
◦ http://www.antipatterns.com/briefing/sld016.htm

Gof4 patterns
Creational
Structural
Behavioral

Software Architecture AntiPatterns

 Autogenerated Stovepipe
 Stovepipe Enterprise
 Jumble
 Stovepipe System
 Cover Your Assets
 Vendor Lock-in
 Wolf Ticket

35

Software Architecture AntiPatterns …

 Architecture By Implication
 Warm Bodies
 Design By Committee
 Swiss Army Knife
 Reinvent the Wheel
 The Grand Old Duke of York

36

28/03/2013

7

Autogenerated Stovepipe
 Problem
◦ Migrating an existing system

to a distributed, network-centric
or Web-services based system

◦ Converting existing software
interfaces (e.g., functions and
classes) to distributed interfaces

◦ Existing interfaces use fine-grain
data (e.g., parameters)

37 38

Autogenerated Stovepipe …
 Solution
◦ Reengineer interfaces
◦ Make the interfaces larger to fit the “new

stove pipe”
◦ Define a separate, larger-grain object model
◦ The interoperability among subsystems

constitutes the core of the new design
◦ Aim for stable interfaces; even more

important for distributed, network-centric
and Web-services based systems than for
standalone systems

Stovepipe Enterprise
 Problem
◦ Stovepipe Enterprise is

characterized by a
software structure that
inhibits change

◦ Must be constantly
repaired

◦ Changes are done one
hole at a time, often
patched over

◦ Brittle, monolithic system
architectures (usually
undocumented)

◦ Inability of systems to
interoperate

39 40

Stovepipe Enterprise …
 Solution
◦ Force stable interfaces
◦ Form product lines
◦ Identify requirements for the entire system or

enterprise
◦ Write specification documents for the entire

enterprise
◦ Coordination of technologies at several levels
◦ Identify common standards and migration direction

with a standard reference model
◦ Usage conventions across systems
◦ Detailed interoperability conventions across systems
◦ Data, control and presentation integration standards

41

Design by Committee

 Problem
◦ Gold Plating, Standards Disease, Make

Everybody Happy, Political Party
◦ Project team is egalitarian; everyone has equal

say; decisions are democratic
◦ The majority rule leads to diffusion of

abstraction and excess complexity
◦ “A camel is a horse designed by a

committee.”

42

Design by Committee …

 Symptoms
◦ Design documentation is voluminous
◦ The requirements do not converge and are

unstable
◦ Design meetings are slow, concentrate on

details, and avoid big picture discussions
◦ Decisions are only made in meetings
◦ No prioritization of design features

28/03/2013

8

43

Design by Committee …

 Causes
◦ No designated project architect
◦ Ineffective meeting facilitation
◦ The suggestions of all committee members

are incorporated to keep everybody happy
◦ No separation of concerns

44

Design by Committee …
 Refactored solution
◦ Reform the meeting process
◦ Why are we here?
◦ What outcomes do we want?
◦ Assign explicit roles
 Owner, facilitator, architect, developer, tester,

domain expert
 “My specialty is being right when other people are

being wrong.” — George Bernard Shaw

45

Design by Committee …

 Employ Spitwads meeting process
◦ Ask question—How can we improve performance?

◦ Write down answer silently
◦ Toss spitwads à la Michael Jordan

◦ Redistribute, read, and record spitwads

◦ Reach common understanding

◦ Eliminate duplicates

◦ Prioritize by voting

◦ Discuss highest priority selections

46

Design by Committee …
 SQL example
◦ SQL89—115 pages

◦ SQL92—580 pages

◦ SQL3—still not complete; may never be fully
implemented; a dumping ground for advanced
database features

◦ Better solutions
◦ Open Database Connectivity (ODBC)

◦ Java Database Connectivity (JDBC)

47

Reinvent the Wheel
 Problem
◦ Our problem is unique
◦ Developers have minimal knowledge of each

other’s code
◦ Building systems from the ground up even

though related legacy systems exist
◦ The existence of legacy systems is the norm

rather than the exception
◦ Lack of program families or product lines

48

Reinvent the Wheel …

 Symptoms
◦ Closed system architectures—no provision of

reuse, interoperability, or change management
◦ Replication of COTS components
◦ Inability to deliver desired features on time

and within budget
◦ Corporate knowledge is not leveraged

28/03/2013

9

49

Reinvent the Wheel …

 Causes
◦ No communication and technology transfer

among software development projects
◦ Corporate knowledge is not leveraged
◦ No explicit architecture process
◦ Lack of enterprise management

