
05/04/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Final exam
◦ Sat, April 13 — 7:00 -10:00 pm

 Last lecture
◦ Review
◦ What I learned in this course
◦ What advice would I give considering what I learned

 Assignment 3
◦ Due Thu, April 4 — today
◦ Part I — Define software evolution terms
◦ Part II — Investigate two AntiPatterns —Vendor-Lock-In —

Analysis Paralysis
◦ Part III — Refactoring in IBM Eclipse and MS Visual Studio and Blob

AntiPattern
◦ Cite your sources
◦ Submit by e-mail to seng371@uvic.ca

2

3

Final—Format

 Closed books, closed notes,
no calculators, no gadgets

 15-20 questions
 Same format as the midterm
 Time should not be a problem
 Attempt all questions !!

 The final is hard 

4

Final—Materials

 Everything we discussed in class
 All lecture slides including
◦ All slides before midterm
◦ All slides after midterm
◦ All lab slides:
 Visualization, CVS, GIT, GITHUB, ANT
 IEEE Standard

 Midterm
◦ Study it!
◦ 1-2 final questions are midterm questions

 Three major reading assignments
◦ See next slides

Reading Assignment I
 IBM Corporation: An Architectural Blueprint for

Autonomic Computing, Fourth Edition (2006)
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf

 Truex, Baskerville, Klein: Growing Systems in Emergent
Organizations. Communications of the ACM, 42(8):117-
123 (1999).
http://portal.acm.org/citation.cfm?id=310930.310984&coll=GUIDE&dl=GUIDE,ACM&CFID=224
0896&CFTOKEN=98671917

 Northrop, et al.: Ultra-Large-Scale Systems. The
Software Challenge of the Future. Technical Report,
Software Engineering Institute, Carnegie Mellon
University, 134 pages ISBN 0-9786956-0-7 (2006)
http://www.sei.cmu.edu/uls

5

Reading Assignment II
 Chikofsky, Cross: Reverse Engineering and Design

Recovery: A Taxonomy, IEEE Software 7(1):13-17 (1990)
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=43044

 Kienle, Müller: Rigi—An Environment for Software
Reverse Engineering, Exploration, Visualization, and
Redocumentation, Science of Computer Programming
75(4):247-263, Elsevier, Apr. 2010.
http://www.sciencedirect.com/science/article/pii/S016764230900149X

 Müller, Jahnke, Smith, Storey, Tilley, Wong, Reverse
Engineering: A Roadmap, in The Future of Software
Engineering, ICSE 2000 Millennium Celebration, 2000.
http://dl.acm.org/citation.cfm?id=336526

6

05/04/2013

2

Reading Assignment III
 Murphy, Notkin, Lan: An empirical study of static call graph

extractors, ACM Transactions on Software Engineering and Methodology
(TOSEM) 7(2):158-191 (1998)
◦ http://dl.acm.org/citation.cfm?id=279314

 Müller, Jahnke, Smith, Storey, Tilley, Wong: Reverse Engineering: A
Roadmap, in The Future of Software Engineering, pp. 47-60 (2000)
◦ http://dl.acm.org/citation.cfm?id=336526

 Storey: Theories, tools and research methods in program
comprehension: past, present and future, Software Quality Journal
14:187-208 (2006)
◦ http://webhome.cs.uvic.ca/~chisel/pubs/storey-pc-journal.pdf

 Brown, Malveau, McCormick III, Mowbray: AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis, John Wiley (1998)

 AntiPatternsTutorial and Website
◦ http://www.antipatterns.com/briefing/index.htm
◦ http://www.antipatterns.com

7

Course Review
Final exam

Sat, April 13 — 7:00 -10:00 pm

8

Some basic definitions
 Software - the programs, documentation, and

operating procedures by which computers can be
made useful to humans

 Software evolution - a process of continuous
change from a lower, simpler to a higher, more
complex, or better state

 Software maintenance - modification of a software
product after delivery, to correct faults, to
improve performance or other attributes, or to
adapt the product to a modified environment

 Maintainability - the ease with which
maintenance can be carried out

9

Maintenance versus evolution... (1)
 The term Software Engineering was coined in 1968

at a NATO meeting to address the upcoming
“software crisis”

 Maintenance was considered to be something
that was done after delivery (as in the waterfall
model)

 Evolution captures the more realistic evolutionary
model of software (it is never “done”)

 Manny Lehman in the 70’s proposed laws of
software evolution, after studying the IBM OS 360
operating system – findings later confirmed in
other studies, especially of proprietary systems

 Term gaining more acceptance since the 90’s

10

Maintenance versus evolution... (2)
 Software that is used in the real world, will need to

adapt as the world continually changes
 Software that doesn’t permit change is said to suffer

from decay – a poorly degraded system will have to
be phased out (sometimes called a legacy system)

 Software evolution is also fundamental in agile
development which recognizes the need to
continually adapt to changing requirements in a
lightweight and agile manner

 Nowadays the terms software evolution and software
maintenance are considered synonyms

 Prefer the term evolution, because maintenance may
imply that the software has deteriorated in some way

11

Difference between maintenance
and “green field development”
 Maintenance is constrained by parameters

of existing system
 “Impact analysis” important step in

maintenance
 How can the change be accommodated?
 What ripple effects will there be?
 Determine skills and knowledge required

to get the job done

12

05/04/2013

3

Analogy from the building industry

13

Some problems in legacy software
maintenance
 Maintenance has a poor image!
 Lack of documentation – especially on

“design rationale”
 Architectural decay
 Programmers lacking in domain/

application knowledge
 Unstructured code
 Old code that can’t be thrown away

(mixed languages, special purpose
hardware)

14

Why maintenance is needed?

 To provide continuity of service
 Bug fixing, recovery from failure, change in

platform OS, hardware etc.
 To support mandatory upgrades
 Changing laws, regulations, competitive

edge
 To support user requests
 To support future maintenance

15

Categorizing software change

 Modification initiated by defects
 Modifications driven by changes to the

environment of the system
 Changes undertaken to expand the

existing requirements on a system
 Change undertaken to prevent

malfunction
 Change undertaken to increase

maintainability

16

Types of maintenance
 Corrective maintenance: Reactive modification of a

software product performed after delivery to correct
discovered problems

 Adaptive maintenance: Modification of a software
product performed after delivery to keep a software
product usable in a changed or changing environment

 Perfective maintenance: Modification of a software
product after delivery to improve performance or
maintainability

 Preventive maintenance: Modification of a software
product after delivery to detect and correct latent
faults in the software product before they become
effective faults

17

Complexity of configurations
 Application Server
◦ ~100 configuration parameters
◦ Several applications
◦ Hundreds of servlets
◦ Tens of EJBs

 Web Server
◦ ~20 configuration parameters
◦ Serves thousands of web

artifacts

 Messaging
◦ ~30 configuration parameters

 DBMS, TCP/IP, OS …

18

x 2-5 parameters

1502 settings

Information systems are very
complex for humans and

costly to install an maintain

05/04/2013

4

19

The Evolution Problem:

Devices, environment, infrastructure, web,
services, business goals, user expectations, …

all evolve over time

— thus, software must evolve

20

Goal: Trouble Free Systems

Build a system used by millions of people
each day administered and managed

by a half-time person

— Jim Gray, Microsoft Research

21

The Complexity Problem
 The increasing complexity of computing

systems is overwhelming the capabilities
of software developers and system
administrators to design, evaluate,
integrate, and manage these systems

 Major software and system vendors are
concluding that the only viable long-term
solution is to create computing systems
that manage themselves

… elusive goal?

The Conquest of Complexity

 There has never been anything quite like
information technology before, but there
have certainly been other complex
technologies that needed simplifying

 To be truly successful, a complex
technology needs
to “disappear”

22
Source: A. Kluth. Information Technology. The Economist, Oct 28, 2004

What is Autonomic Computing?
 Webster’s definition
◦ Acting or occurring involuntarily; automatic: an autonomic reflex
◦ Relating to, affecting, or controlled by the autonomic nervous

system or its effects or activity
◦ Autonomic nervous system: that part of the

nervous system that governs involuntary body
functions like respiration and heart rate

 IBM’s definition
◦ An approach to self-managed computing

systems with a minimum of human interference
◦ The term derives from the body's autonomic

nervous system, which controls
key functions without conscious
awareness or involvement

23

Decide Resource

Measure

Control

24

Increased
Responsiveness

Adapt to dynamically changing
environments

Business Resiliency

Discover, diagnose,
and act to prevent

disruptions

Operational
Efficiency

Tune resources and balance
workloads to maximize use of
IT resources

Secure Information
and Resources

Anticipate, detect, identify,
and protect against attacks

What autonomic or self-managing systems
deliver

*Self

05/04/2013

5

Autonomic Element

 Consists of an Autonomic
Manager (AM) and an
Autonomic Element (AE)

 Manager and managed
element form a
level of indirection
◦ Spatially and temporally

separate entities

◦ Enterprise Service
Bus

Knowledge

Plan

ExecuteMonitor

Analyze

Sensors Effectors

Sensors Effectors

Managed Element

Autonomic
Manager

Level of indirection

25

MAPE-K Loop
Standards & Interfaces

26

Events

Symptoms

Policies

Scripts

Script
Interpreter

Symptom
Database

ACRA: Autonomic Computing
Reference Architecture

27

MAPE-K Loops in IT Processes

28

IBM: An Architecture Blueprint for Autonomic Computing, 4th Ed. 2006

Self-Adaptive Systems
My Favourite Definition
 A self-adaptive system continuously adjusts

its behaviour at run-time in response to its
perception of its environment and its own
state in the form of fully or semiautomatic
self-adaptation.

 H. Giese, Y. Brun, J. Serugendo, C. Gacek, H.
Kienle, H. Müller, M. Pezzè, M. Shaw.:
Engineering Self-Adaptive and Self-Managing
Systems, LNCS 5527, Springer, 2009.

29

Key Questions
 What aspects of the environment should a

self-adaptive system monitor?
◦ The system cannot monitor everything in the

environment
◦ What aspects of the environment are truly relevant?

 How should a self-adaptive system react if it
detects changes in the environment?
◦ Maintain high-level goals
◦ Relax non-critical goals to allow the system a degree

of flexibility
◦ Goal trade-off analysis

30

05/04/2013

6

31

Laws of software evolution
1. Law of Continuing Change (1974)
◦ “E-type systems must be continually adapted or they become

progressively less satisfactory.”

◦ Software which is used in a real-world environment must change
or become less and less useful in that environment.

2. Law of Increasing Complexity (1974)
◦ “As an E-type system evolves its complexity increases unless

work is done to maintain or reduce it.”

◦ As an evolving program changes, its structure becomes more
complex, unless active efforts are made to avoid this
phenomenon.

32

Laws of software evolution …
3. Law of Self Regulation (1978)
◦ “E-type system evolution process is self regulating with

distribution of product and process measures close to normal.”

◦ System attributes such as size, time between releases, and the
number of reported errors are approximately invariant for each
system release.

4. Law of Conservation of Organisational Stability
◦ “The average effective global activity rate in an evolving E-type

system is invariant over product lifetime.”

◦ Over a program’s lifetime, its rate of development is approximately
constant and independent of the resources devoted to system
development.

33

Laws of software evolution …
5. Law of Conservation of Familiarity (1978)
◦ “As an E-type system evolves all associated with it, developers,

sales personnel, users, for example, must maintain mastery of its
content and behaviour to achieve satisfactory evolution.
Excessive growth diminishes that mastery.”

◦ Over the lifetime of a system, the incremental system change in
each release is approximately constant.

◦ The average incremental growth of systems tends to remain
constant or decline over time.

6. Law of Continuing Growth (1991)
◦ “The functional content of E-type systems must be continually

increased to maintain user satisfaction over their lifetime.”

◦ Functional capability must increase over the lifetime of a system
to maintain user satisfaction.

34

Laws of software evolution …
7. Law Declining Quality (1996)
◦ “The quality of E-type systems will appear to be declining unless

they are rigorously maintained and adapted to operational
environment changes.”

◦ Unless rigorously adapted, quality will appear to decline over time.

8. Law of Feedback System (1996)
◦ “E-type evolution processes constitute multi-level, multi-loop,

multi-agent feedback systems and must be treated as such to
achieve significant improvement over any reasonable base”

◦ Evolution systems are multi-level, multi-agent, multi-loop feedback
systems.

Program understanding
 What strategies do you follow when trying to

understand a program written by someone
else?

 Describe the kinds of information you use to
arrive at an understanding of how it works.

35

Program comprehension theories
and models
 Program comprehension models
◦ Bottom up
◦ Top down
◦ Integrated meta-model
◦ Opportunistic, Systematic etc.

 Theories about tool support
◦ Cognitive support
◦ Improving flow

36

05/04/2013

7

37

Developing mental models using
cognitive models

Mental Model

Mappings
Cognitive Models

Software System
Programming

Domain

Problem Domain

38

Software AntiPatterns—Overview

 Motivation
 Reference model
 Software Development AntiPatterns
 Software Architecture AntiPatterns
 Software Management AntiPatterns
 Summary

39

Essence of an AntiPattern

 Two solutions instead of a problem and a
solution
◦ Problematic solution which generates negative

consequences
◦ Refactored solution, a method to resolve and

reengineer the AntiPattern

 A pattern in an inappropriate context

40

Relation between
Patterns and AntiPatterns
 Design patterns often evolve into an

AntiPattern
 Procedural programming was a great

design pattern in the 60’s and 70’s
 Today it is an AntiPattern
 Object-oriented programming is today a

practiced pattern ...

41

Relation between
Patterns and AntiPatterns

Context and Forces

Problem

Solution

Benefits

Consequences

Related Solutions

Benefits

Consequences

Related Solutions

Symptoms Consequences

Context and Forces

AntiPattern Solution

Refactored Solution

http://www.antipatterns.com/
briefing/sld006.htm

Reference Model
 Root causes
◦ provide fundamental context for the AntiPattern

 Primal forces
◦ are the key motivators for decision making

 Software design-level model
◦ define architectural scales;

each pattern has a most
applicable scale

42

05/04/2013

8

Root causes

 Haste
 Apathy
 Narrow-mindedness
 Sloth
 Avarice
 Ignorance
 Pride

43 44

Primal Forces …
 Management of functionality
◦ Meeting the requirements

 Management of performance
◦ Meeting required speed and operation

 Management of complexity
◦ Defining abstractions

 Management of change
◦ Controlling the evolution of the software

 Management of IT resources
◦ People and IT artifacts

 Management of technology
◦ Controlling technology evolution

45

AntiPattern ViewPoints

 Developer
◦ Situations encountered by programmers
◦ http://www.antipatterns.com/briefing/sld012.htm

 Architect
◦ Common problems in system structure
◦ http://www.antipatterns.com/briefing/sld014.htm

 Manager
◦ Affect people in all software roles
◦ http://www.antipatterns.com/briefing/sld016.htm

Gof4 patterns
Creational
Structural
Behavioral

Summary
 AntiPatterns are normal
 Some AntiPatterns must be tolerated
◦ Accept those things you cannot change
◦ Have the courage to change those things you can and

the wisdom to know the difference. —Serenity Prayer
 Avoid the use of the Golden Hammer
◦ Excessive use of one pattern
◦ More than 200 well-documented software patterns
 23 GoF
 17 Buschmann
 72 analysis
 38 CORBA
 42 AntiPatterns

 Consider a range of solutions

46

47

Summary …
 During maintenance and evolution one

should be particularly aware of the
potential presence of AntiPatterns

 Awareness of AntiPatterns is critical for
reengineering projects and makes you a
better software engineer

 Consider AntiPatterns next time you
sign on to a new project

 Invest in reading the AntiPatterns book
and web sites

What advice would I give to software
pioneers considering what I know now
and what I learned in this course?

48

A loaded question

05/04/2013

9

Setting the stage
 Suppose we could turn back time to 1968.

It so happens that the first software engineering
conference was held in 1968 in Garmisch
Partenkirchen in Germany. The term software
engineering was coined at that conference.

 Given what you know now about the software
industry and everything you learned in this course
—and all other university courses — what advice
would you give to these pioneers?

 Chances are that the advice you would give to
these pioneers then would still be valid today.
The premise is that if we follow your advice today,
chances are we will be better off in the future.

49

Group Assignment
What advice would you give?

 Address the following
topics
◦ Software evolution

◦ Software engineering
education

◦ Software architecture

◦ Program understanding

 Topic selection
◦ Select 2 of these topics

◦ Select one topic of your own

 Group assignment
◦ Break up in groups of 3-4
◦ Select reporter and facilitator
◦ Pick three topics (see left)
◦ Arrange to meet outside class
◦ Facilitator directs discussion and

keeps time
◦ Reporter records findings and

presents the findings to the class
(3 mins only!)

◦ Turn in three slides with findings in
point form for posting

◦ Write all students names on each
slide

◦ Presentation (3 mins only)
next Thu

50

Please give advice !!
You might change history!!

Congratulations You Arrived!
Have a wonderful summer!

51

