
Advice to 1968 Software
Engineers

● Software Evolution
● Program Understanding
● Security

- Daniel, Brad, Dave, George

Software Evolution
● Software will have to go through continual change in

order to adapt with its environment and previously
unknown requirements, no system is ever finished (David)

● Failure to evolve will lead to system depreciation over
time, and eventually to obsolescence (George)

● Machines must be able to communicate with each other
in order to dynamically adjust at runtime (failure of one
machine must not cause whole system to crash) (Daniel)

● Organizations will have huge investments in software
systems. To maintain the value of these assets, they must
be changed and updated over time (Brad)

Program Understanding
● Multiple approaches:

○ top-down - use own experience and try to confirm
expectations

○ Bottom-up - iteratively abstract high-level understanding
by reading code,

○ Opportunistic - mix of both strategies (Brad)
● Much mechnical and electrical engineering, diagrams must be

used to show software systems. Code in background, much
like equations (Daniel)

● There will be programs available for you to help analyse,
document, and improve previously confusing code. (George)

● There will be a heavy emphasis on documentation to aid with
program understanding, ie: DON'T FORGET TO COMMENT
YOUR CODE. (David)

● Software engineers must spend 10% or more of
development time solely focused on security to always
stay one step ahead of an attacks. (Daniel)

● Dependence on information technology makes
software assurance a key element of business
continuity, national security, and homeland security
(Brad)

● People will continually find and exploit vulnerabilities
in software systems as a lot of money can be made in
doing so. (David)

● One of the commonly used methods for improving
software security is ethical hacking, where software
engineers will purposely try and find vulnerabilities so
they can be fixed before they are found by malicious
hackers. (George)

Security

Advice to Pioneers
Nicholas Guillemot, Vishwendra Gahlot,
Richard McKenzie, Marcelo Gomes

Software Evolution

Nicholas Guillemot, Vishwendra Gahlot,
Richard McKenzie, Marcelo Gomes

● Code Written now likely still used in 20 years

● Create a documentation standard and
promote across industry

● Document for future people working on
project, not just using it

● Keep Source + Documentation + Update

Software Engineering
Education
● Practical Experience

● Case Studies of past failures & successes

● Encourage Industry Professionals teaching /
guest lecturing more often

Nicholas Guillemot, Vishwendra Gahlot,
Richard McKenzie, Marcelo Gomes

Open Source Software
● Make Software public & allow collaboration

○ Working together for betterment of
industry

○ Lowers entry barrier to industry

● Use open source license, along with paid
support, to still make money but have more
accessible product

Nicholas Guillemot, Vishwendra Gahlot,
Richard McKenzie, Marcelo Gomes

SENG 371
Dear History
Justin, Adam, Geoff, Scott

Software Evolution
● Software maintenance will grow to consume

40-60% of the software development cycle
○ Strive to evolve software rather than create legacy

systems with an finite life span.
● Software development will move towards a

decentralized system
○ The days of mainframes are over. Evolving systems

must be componentized.

Software Engineering
Education

● Maintainability is extremely important
○ No product can be considered completely finished

● Antipatterns can be recognized
○ Look for common solutions to problems that don't

actually work
● Promote continued learning

○ Software changes quickly, current skills will be less
applicable in 10 years.

● Axe the waterfall model
○ No project can perfectly follow the waterfall model
○ You will almost never define all requirements

Software Engineering
Education (Continued)
● Reverse Engineering should be taught in

schools
○ Software engineers will often have to work with

undocumented legacy systems.
○ Reverse engineering is a key component of program

understanding.
○ Reverse engineering concepts should be taught to

encourage the development of widely adopted and
automated RE tools.

Agile Development
● Static development methodologies don't

work
○ Requirements cannot all be known before

development begins
○ Often requirements will change during development
○ Clients like to see prototype software over

documents
○ Initial system design may not work.

● Instead develop in cycles
○ Focus on creating working software over any

documentation.
○ Work with the client instead of creating a contract.
○ Be open to change instead of following a plan.
○ Do not be afraid to refactor.

Software Evolution

● Software efforts and costs will eventually be
spent mostly in maintenance and evolution
phase
○ Systems should be designed to be adaptable,

maintainable and scalable.
○ Systems will eventually require constant

development and adjustment
● Start work early on making software

evolution more cost and time effective

Ian Brown
Kai Fuglem
Rob Hole
Saleh Almuqbil

Software Architecture
● Design for expanding scale

○ Scale of systems will grow exponentially
○ Design systems with that in mind
○ Importance of strong/stable architecture grows with

the systems size
● Try to make designs functionally

independent and able to work together
○ Must find a way to encapsulate similar functionality

or else maintainability of large systems becomes
impossible

Ian Brown
Kai Fuglem
Rob Hole
Saleh Almuqbil

Interfaces
● Develop standards early

○ Investigate clear standards for both human
computer interaction and computer-computer
interaction

● Connectors are important
○ Spend lots of time making computers work together
○ Systems should abstract away functionality not

needed by the 'user'

Ian Brown
Kai Fuglem
Rob Hole
Saleh Almuqbil

Software Evolution

• Aim to create systems that are easy to maintain
and evolve
o Up to 90% of the software development is now being

used for maintenance now-a-days (in the future!).
• Make use of existing libraries when possible

o Less in-house source code to manage/maintain and
saves you from reinventing the already existing wheel.

• Try to follow the DRY and SOLID Principles in OO
Design/Implementation
o This will greatly increase the maintainability of your

application/system
Mikko, Allen, Curtis and Paul

Software Architecture

• A coherent architecture is key to any software
system (design, design design)
o Without it you may incur additional maintenance or

refactoring costs
• Make use of existing design patterns and watch

for the development of anti-patterns
o Design patterns provide a framework to launch from

and are often more maintainable
• Be consistent in your design at each level/layer

of an application and prefer composition to
inheritance.

Mikko, Allen, Curtis and Paul

Continuous Learning

• It is important to remain up-to-date on emerging
technologies and concepts
o Research is always being done to solve existing

problems in software and development
systems/methods of conquering problems

• You are only worth as much as you know
o The more you know the better! So learn ALL OF IT!

• I know you guys are at the beginning of the
'internet' (arpanet), but when it goes public, adopt
it and share your knowledge with the world.
o It'll be like 1982, if history repeats itself

Mikko, Allen, Curtis and Paul

Slide 3

1 arpanet the precursor of the internet was built in 1968
Curtis St. Pierre,

1 Why you no fix it then
Paul Hunter,

2 I no know what you want
Curtis St. Pierre,

1 idunno eitherr
maybe no cursing? haha
Mikko Sanchez,

What Advice
Would We Give?
To the 1968 NATO conference in
Garmisch Germany

Software Evolution
● Standards

● Agile development methodologies

● Reverse Engineering

Software Architecture
● Modularity of software components

● Levels of abstraction

● Separation of concerns

Copyright
● How do you copyright software?

● Can you copyright an API?

● How do you patent a software user

interface?

● How can software companies protect their

assets?

Software Education

• K - 12 Education needs to be implemented

• Undergraduate Education effectiveness
needs improvement

• Undergraduate Education needs to focus on
industry needs

Jeremy, Wes, Anita

Software Architecture

• Allows early analysis of a system

• Crucial design decisions are made early on

• Gives stakeholders an idea of what they will
see

• Reduces overall costs

Jeremy, Wes, Anita

Software Tools

• Invest in a good interface. Software tools will
have more users in the future and the key to
adoption is an interface that is easy to use.

• Focus on simplicity, flexibility and
extensibility. A successful tool does its job
well and can easily be integrated into
commonly used platforms and environments.

• Extensive evaluation

Jeremy, Wes, Anita

SENG 371
Dear History

Justin, Adam, Geoff, Scott

Software Evolution
• Software maintenance will grow to consume

40-60% of the software development cycle
o Strive to evolve software rather than create legacy

systems with an finite life span.

• Software development will move towards a
decentralized system
o The days of mainframes are over. Evolving systems

must be componentized.

Software Engineering
Education
• Maintainability is extremely important

o No product can be considered completely finished

• Antipatterns can be recognized
o Look for common solutions to problems that don't

actually work

• Promote continued learning
o Software changes quickly, current skills will be less

applicable in 10 years.

• Axe the waterfall model
o No project can perfectly follow the waterfall model
o You will almost never define all requirements

Software Engineering
Education (Continued)
• Reverse Engineering should be taught in

schools
o Software engineers will often have to work with

undocumented legacy systems.
o Reverse engineering is a key component of program

understanding.
o Reverse engineering concepts should be taught to

encourage the development of widely adopted and
automated RE tools.

Agile Development
• Static development methodologies don't

work
o Requirements cannot all be known before

development begins
o Often requirements will change during development
o Clients like to see prototype software over

documents
o Initial system design may not work.

• Instead develop in cycles
o Focus on creating working software over any

documentation.

