
26/01/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted

 Labs this week
 UML tools
 Available in the lab
 No need to bring your laptops or install software

 Assignment 1
◦ Due Mon, Feb 4 (extension)
◦ Cite your sources
◦ Part I — Useful definitions
◦ Part II — Growing systems in emergent organizations
◦ Part III — Ultra large scale systems (ULS)

2

Job Opportunity
 http://registrar.uvic.ca/safa

/documents/XMENG2.pdf

3

Reading assignments
 IBM Corporation: An Architectural Blueprint for

Autonomic Computing, Fourth Edition (2006)
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf

 Truex, Baskerville, Klein: Growing Systems in Emergent
Organizations. Communications of the ACM, 42(8):117-
123 (1999).
http://portal.acm.org/citation.cfm?id=310930.310984&coll=GUIDE&dl=GUIDE,ACM&CFID=224
0896&CFTOKEN=98671917

 Northrop, et al.: Ultra-Large-Scale Systems. The
Software Challenge of the Future. Technical Report,
Software Engineering Institute, Carnegie Mellon
University, 134 pages ISBN 0-9786956-0-7 (2006)
http://www.sei.cmu.edu/uls

4

Autonomic Element

 Consists of an Autonomic
Manager (AM) and an
Autonomic Element (AE)

 Manager and managed
element form a
level of indirection
◦ Spatially and temporally

separate entities

◦ Enterprise Service
Bus

Knowledge

Plan

ExecuteMonitor

Analyze

Sensors Effectors

Sensors Effectors

Managed Element

Autonomic
Manager

Level of indirection

5

MAPE-K Loop

Monitor Analyzer
 Senses the managed

process and its context
 Collects data from the

managed resource
 Provides mechanisms to

aggregate and filter
incoming data stream

 Stores relevant and critical
data in the knowledge base
or repository for future
reference.

 Compares event data
against patterns in the
knowledge base to
diagnose symptoms and
stores the symptoms

 Correlates incoming data
with historical data and
policies stored in
repository

 Analyzes symptoms
 Predicts problems

6

26/01/2013

2

MAPE-K Loop

Planner Execute Engine

 Interprets the symptoms
and devises a plan

 Decides on a plan of action

 Constructs actions
◦ building scripts

 Implements policies

 Often performed manually

 Executes the change in the
managed process through
the effectors

 Perform the execution plan

 Often performed manually

7

Autonomic Manager

AM’s Manageability Endpoint (ME)

Knowledge

Plan

ExecuteMonitor

Analyze

Sensors Effectors

Sensors Effectors

Policy

Manageability Interface (MI)

Sensors Effectors

Managed Element
8

Manageability Endpoints

 A Manageability Endpoint (ME) exposes
the state and the management operations
for a resource

 An autonomic manager communicates
with a manageability endpoint through the
Manageability Interface (MI)

ME

MI MI

ME

MI MI

MEME ME

MI
9

Manageability Interface
 An MI for monitoring and controlling a

managed resource consists of sensors and
effectors

 Sensors obtain data from the resource
◦ read state variables in the ME

 Effectors perform operations on the resource
◦ call methods in the ME

 Critical success factors for AC initiative
◦ Separating AMs and MEs
◦ Standardizing MIs

10

11

ACRA
Autonomic Computing Reference Architecture MAPE-K Loops in IT Processes

12

IBM: An Architecture Blueprint for Autonomic Computing, 4th Ed. 2006

26/01/2013

3

No Shortage of Complexity
Industry Conquest Solutions

13

Industry’s efforts
to emulate

Nature’s Gold
Standard of

virtualization
software and

complexity
concealment

HP
Adaptive enterprise using
OpenView

IBM Autonomic computing

EDS Agile enterprise

Hitachi Harmonious computing

Dell Dynamic computing

MS Dynamic systems initiative

Self-Adaptive Systems
Definition
 Self-adaptive software evaluates its own behavior and

changes behavior when the evaluation indicates that it is
not accomplishing what the software is intended to do,
or when better functionality or performance is possible

 [DARPA Broad Agency Announcement on Self-Adaptive
Software (BAA-98-12) in December 1997]

 This definition is quite useful and can be extended to
include other quality criteria or extra-functional/non-
functional requirements (i.e., not just performance)

14

Self-Adaptive Systems
Definition
 A self-adaptive software system can alter its

behaviour at run-time in response to changes
in its environment

 A self-adaptive system has the following abilities:
◦ Accommodate dynamic change at run-time

◦ Accommodate changes at run-time without shut down

◦ Assess its own behaviour

◦ Observe its context or environment (i.e., anything observable)

15

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, C. Johnson, N. Medvidovic,
A. Quilici, D. Rosenblum, A. Wolf: An Architecture-Based Approach to

Self-Adaptive Software, IEEE Intelligent Systems, pp. 54-62, 1999.

Self-Adaptive Systems
My Favourite Definition
 A self-adaptive system continuously adjusts

its behaviour at run-time in response to its
perception of its environment and its own
state in the form of fully or semiautomatic
self-adaptation.

 H. Giese, Y. Brun, J. Serugendo, C. Gacek, H.
Kienle, H. Müller, M. Pezzè, M. Shaw.:
Engineering Self-Adaptive and Self-Managing
Systems, LNCS 5527, Springer, 2009.

16

Self-adaptive Systems:
Anticipated and Un-anticipated Adaptation
 Anticipated adaption
◦ The different contexts to be accommodated at run-time are

known at design-time

 Un-anticipated adaption
◦ The variation possibilities are recognized and computed at run-

time
◦ The decision which variant is best is computed using self-

awareness and environmental context information

 Pure un-anticipated self-adaptive system are rare
◦ Most self-adaptive systems feature a combination of anticipated

self-adaptation and un-anticipated self-adaptation

 Exercise: come up with a practical,
technical example for each category

17

Self-Adaptive Systems
Definition
 Self-adaptive software evaluates its own behavior and

changes behavior when the evaluation indicates that it is
not accomplishing what the software is intended to do,
or when better functionality or performance is possible

 [DARPA Broad Agency Announcement on Self-Adaptive
Software (BAA-98-12) in December 1997]

 This definition is quite useful and can be extended to
include other quality criteria or extra-functional/non-
functional requirements (i.e., not just performance)

18

26/01/2013

4

Self-Adaptive Systems
Definition
 A self-adaptive software system can alter its

behaviour at run-time in response to changes
in its environment

 A self-adaptive system has the following abilities:
◦ Accommodate dynamic change at run-time

◦ Accommodate changes at run-time without shut down

◦ Assess its own behaviour

◦ Observe its context or environment (i.e., anything observable)

19

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, C. Johnson, N. Medvidovic,
A. Quilici, D. Rosenblum, A. Wolf: An Architecture-Based Approach to

Self-Adaptive Software, IEEE Intelligent Systems, pp. 54-62, 1999.

Self-Adaptive Systems
My Favourite Definition
 A self-adaptive system continuously adjusts

its behaviour at run-time in response to its
perception of its environment and its own
state in the form of fully or semiautomatic
self-adaptation.

 H. Giese, Y. Brun, J. Serugendo, C. Gacek, H.
Kienle, H. Müller, M. Pezzè, M. Shaw.:
Engineering Self-Adaptive and Self-Managing
Systems, LNCS 5527, Springer, 2009.

20

Self-adaptive Systems:
Anticipated and Un-anticipated Adaptation
 Anticipated adaption
◦ The different contexts to be accommodated at run-time are

known at design-time

 Un-anticipated adaption
◦ The variation possibilities are recognized and computed at run-

time
◦ The decision which variant is best is computed using self-

awareness and environmental context information

 Pure un-anticipated self-adaptive system are rare
◦ Most self-adaptive systems feature a combination of anticipated

self-adaptation and un-anticipated self-adaptation

 Exercise: come up with a practical,
technical example for each category

21

Key Questions
 What aspects of the environment should a

self-adaptive system monitor?
◦ The system cannot monitor everything in the

environment
◦ What aspects of the environment are truly relevant?

 How should a self-adaptive system react if it
detects changes in the environment?
◦ Maintain high-level goals
◦ Relax non-critical goals to allow the system a degree

of flexibility
◦ Goal trade-off analysis

22

Key Questions
 What are the conditions that trigger

adaptation?
 Response time

◦ To address poor response times, a system might
adapt itself by optimising resource utilisation

 Fault-tolerance
◦ To recover from a subsystem or device failure

 Extension
◦ To accommodate new functionality at run-time

23

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, C. Johnson, N. Medvidovic,
A. Quilici, D. Rosenblum, A. Wolf: An Architecture-Based Approach to

Self-Adaptive Software, IEEE Intelligent Systems, pp. 54-62, 1999.

Key Questions
 Should the system be open-adaptive or closed-

adaptive?
◦ With open-adaptive systems, new behaviours can be

introduced at run-time
◦ With closed-adaptive systems, all adaptive behaviour is fixed

at design-time; once running a closed system cannot be made
to do new things that were unanticipated when it was
designed

◦ Anticipated versus un-anticipated adaptation

 What type of autonomy must be supported?
◦ Fully autonomous systems make their own adaptation

decisions and carry them out unaided
◦ Human-in-the-loop systems require inputs from humans, if

only to OK proposed changes
◦ Semi-autonomic versus fully autonomic systems

24

26/01/2013

5

Key Questions
 Under what circumstances is adaptation cost-effective?
 The benefits gained from making a change must outweigh

the costs associated with making the change
 Costs include:
◦ Performance and memory overhead of monitoring system

behaviour
 Monitoring is necessary to make adaptation decisions
 Memory may be limited on, particularly if adaptive software runs on

embedded devices
◦ Decision making—interpreting data gathered from

monitoring may be computationally expensive
◦ Executing the actions to actually change a system

configuration
 Changes involving physically distributed systems must be coordinated

which itself incurs additional overhead

25

Key Questions
 How often should adaptation be considered?

◦ Policies range from continuous (proactive) adaptation to
as-and-when necessary (reactive)

◦ Adaptation can also be opportunistic—exploiting resources
such as CPU time when it is not being used for other tasks

◦ “Go green” adaptation

 What kind of information must be collected to make
adaptation decisions
◦ Data can be gathered continuously

 This provides precise and up-to-date observations, but
incurs relatively high cost

◦ Data can be gathered less often with the resulting samples
being approximations of environment activity; this approach
imposes less overhead

◦ Trust issues

26

Major Drivers for
Self-Adaptive Systems

 Autonomic Computing: self-managing systems
 Ubiquitous Computing: changing environments
◦ Ubiquitous computing (ubicomp) is a post-desktop model of human-

computer interaction in which information processing has been thoroughly
integrated into everyday objects and activities.

◦ As opposed to the desktop paradigm, in which a single user consciously
engages a single device for a specialized purpose, someone "using"
ubiquitous computing engages many computational devices and systems
simultaneously, in the course of ordinary activities, and may not necessarily
even be aware that they are doing so.

 This paradigm is also referred to as pervasive
computing, ambient intelligence, or
everyware.

27
Ubiquitous Computing Wiki

Useful Papers under Resources
Course Web Site

 Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era. IBM Systems
Journal 42(1):5-18 (2003)

 Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer
36(1):41-50 (2003)

 Kluth, A.: Information Technology: Make It Simple. The Economist (2004)

 Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-Based Runtime Software Evolution.
(Most Influential Paper Award at ICSE 2008) In: ACM/IEEE International Conference on
Software Engineering (ICSE 1998), pp. 177-186 (1998)

 Huebscher, M.C., McCann, J.A.: A Survey of Autonomic Computing—Degrees, Models,
and Applications. ACM Computing Surveys, 40 (3):7:1-28 (2008)

 Müller, H.A., Kienle, H.M., Stege, U.: Autonomic Computing: Now You See It, Now You
Don’t—Design and Evolution of Autonomic Software Systems. In: De Lucia, A.; Ferrucci,
F. (eds.): Software Engineering International Summer School Lectures: University of
Salerno. LNCS, Springer-Verlag, Heidelberg, pp. 32–54 (2009)

 Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre,
F., Schmidt, N., Zambonelli, F.: A Survey of Autonomic Communications. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 1(2):223-259 (2006)

28

Class Participation Assignment

 Pick a self-managing scenario
 Define managed resources
 Define managing goals
 Define trade-off choices

29

Presentation notes
 Rob, Anita, Jordan, George
◦ S — Wireless Network

◦ R — Hardware, routers, bandwidth, connection

◦ G — Availability, security, connections speed, maintenance

◦ T — Availability vs user base, availability vs. maintenance,
availability vs. connections speed

 Brandon, Amanda, Romil
◦ S — Backup over a network

◦ R — Storage, network, CPU

◦ G — Back ups on time, back up is verified, security, CPU
available for other tasks

◦ T — Time management/size, CPU management, CPU load,
network load

30

26/01/2013

6

Presentation notes
 Justin, Allen, Mikko
◦ S	— Library

◦ R — Books, Money, Computers, Staff

◦ G — New books, more computers, More staff

◦ T — Limited funds, limited space

 Y, Sam, Mack
◦ S — Hospital

◦ R — Staff, drugs, equipment, space

◦ G — Maximize space efficiency, maximize staff, lower cost, raise
standards

◦ T — Money vs Staff, Time vs Cost

31

Presentation notes
 David, Daniel, Brad, Ian
◦ S — Cloud based webservice

◦ R — Servers, Database, Load balancer

◦ G — Maximize speed and availability, lower cost

◦ T — Speed vs Availability (limit bandwidth of users), Speed vs
Cost, Availability vs Cost

 Wes, Curtis, Jeremy, Kai
◦ S — Send people to space

◦ R — Oxygen, Pressure, Temperature, Lights, Time

◦ G — O2 > 20%, …

◦ T — Temperature vs Pressure, basic chemistry

32

Presentation notes
 Paul, Scott, Marc

◦ S — Grocery Store

◦ R — Product stock, Back stock, Employees, Space

◦ G — Keep produce fresh, conserve space, staff numbers

◦ T — Order vs Back stock, More staff vs Less staff, costs and
trends

 Mike, Geoff, Adam

◦ S — AI for a video game (FPS)

◦ R — Position, health, ammo, objectives

◦ G — Survive, Aggression, Conservative, Orders

◦ T — Sacrifice position and ammo to recover health, sacrifice
health to capture an objective

33

Presentation notes
 Richard, Nick, Vish
◦ S — Server farm

◦ R — Main server, VM, ressource servers

◦ G — Cost, save energy, servers

◦ T — Smaller VM's, centralized server vs many servers, security

34

