
26/01/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Will likely change to Moodle over the next few days
◦ Lecture notes posted

 Mon, Feb 4
◦ Norha Villegas: Context Management and Self-Adaptivity

for Situation-Aware Smart Software Systems
 Assignment 1
◦ Due Feb 4 (extension) due to website challenges
◦ Cite your sources
◦ Part I — Useful definitions
◦ Part II — Growing systems in emergent organizations
◦ Part III  — Ultra large scale systems (ULS)

2

Reading assignments
 IBM Corporation:  An Architectural Blueprint for 

Autonomic Computing, Fourth Edition (2006) 
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf

 Truex, Baskerville, Klein: Growing Systems in Emergent 
Organizations. Communications of the ACM, 42(8):117-
123 (1999). 
http://portal.acm.org/citation.cfm?id=310930.310984&coll=GUIDE&dl=GUIDE,ACM&CFID=224
0896&CFTOKEN=98671917

 Northrop, et al.: Ultra-Large-Scale Systems. The 
Software Challenge of the Future. Technical Report, 
Software Engineering Institute, Carnegie Mellon 
University, 134 pages ISBN 0-9786956-0-7 (2006) 
http://www.sei.cmu.edu/uls

3

Self-Adaptive Systems
My Favourite Definition

 A self-adaptive system continuously adjusts its 
behaviour at run-time in response to its perception of 
its environment and its own state in the form of fully or 
semiautomatic self-adaptation.

 H. Giese, Y. Brun, J. Serugendo, C. Gacek, H. Kienle, H. 
Müller, M. Pezzè, M. Shaw.: Engineering Self-Adaptive and 
Self-Managing Systems, LNCS 5527, Springer, 2009.

4

Key Questions
 What aspects of the environment should a 

self-adaptive system monitor?
◦ The system cannot monitor everything in the 

environment
◦ What aspects of the environment are truly relevant?

 How should a self-adaptive system react if it 
detects changes in the environment?
◦ Maintain high-level goals
◦ Relax non-critical goals to allow the system a degree 

of flexibility
◦ Goal trade-off analysis

5

Key Questions
 What are the conditions that trigger 

adaptation?
 Response time

◦ To address poor response times, a system might 
adapt itself by optimising resource utilisation

 Fault-tolerance
◦ To recover from a subsystem or device failure

 Extension
◦ To accommodate new functionality at run-time

6

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, C. Johnson, N. Medvidovic, 
A. Quilici, D. Rosenblum,  A. Wolf:  An Architecture-Based Approach to 

Self-Adaptive Software, IEEE Intelligent Systems, pp. 54-62, 1999.



26/01/2013

2

Key Questions
 Should the system be open-adaptive or closed-

adaptive?
◦ With open-adaptive systems, new behaviours can be 

introduced at run-time
◦ With closed-adaptive systems, all adaptive behaviour is fixed 

at design-time; once running a closed system cannot be made 
to do new things that were unanticipated when it was 
designed

◦ Anticipated versus un-anticipated adaptation

 What type of autonomy must be supported?
◦ Fully autonomous systems make their own adaptation 

decisions and carry them out unaided
◦ Human-in-the-loop systems require inputs from humans, if 

only to OK proposed changes
◦ Semi-autonomic versus fully autonomic systems

7

Key Questions
 Under what circumstances is adaptation cost-effective?
 The benefits gained from making a change must outweigh 

the costs associated with making the change
 Costs include:
◦ Performance and memory overhead of monitoring system 

behaviour 
 Monitoring is necessary to make adaptation decisions
 Memory may be limited on, particularly if adaptive software runs on 

embedded devices
◦ Decision making—interpreting data gathered from 

monitoring may be computationally expensive
◦ Executing the actions to actually change a system 

configuration
 Changes involving physically distributed systems must be coordinated 

which itself incurs additional overhead

8

Key Questions
 How often should adaptation be considered?

◦ Policies range from continuous (proactive) adaptation to 
as-and-when necessary (reactive)

◦ Adaptation can also be opportunistic—exploiting resources 
such as CPU time when it is not being used for other tasks

◦ “Go green” adaptation

 What kind of information must be collected to make 
adaptation decisions
◦ Data can be gathered continuously

 This provides precise and up-to-date observations, but 
incurs relatively high cost

◦ Data can be gathered less often with the resulting samples 
being approximations of environment activity; this approach 
imposes less overhead 

◦ Trust issues

9

Major Drivers for
Self-Adaptive Systems

 Autonomic Computing: self-managing systems
 Ubiquitous Computing: changing environments
◦ Ubiquitous computing (ubicomp) is a post-desktop model of human-

computer interaction in which information processing has been thoroughly 
integrated into everyday objects and activities.

◦ As opposed to the desktop paradigm, in which a single user consciously 
engages a single device for a specialized purpose, someone "using" 
ubiquitous computing engages many computational devices and systems 
simultaneously, in the course of ordinary activities, and may not necessarily 
even be aware that they are doing so.

 This paradigm is also referred to as pervasive 
computing, ambient intelligence, or 
everyware.

10
Ubiquitous Computing Wiki

Useful Papers under Resources
Course Web Site

 Ganek, A.G., Corbi, T.A.:  The Dawning of the Autonomic Computing Era. IBM Systems 
Journal 42(1):5-18 (2003) 

 Kephart, J.O., Chess, D.M.:  The Vision of Autonomic Computing. IEEE Computer 
36(1):41-50 (2003) 

 Kluth, A.:  Information Technology: Make It Simple. The Economist (2004)

 Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-Based Runtime Software Evolution. 
(Most Influential Paper Award at ICSE 2008) In: ACM/IEEE International Conference on 
Software Engineering (ICSE 1998), pp. 177-186 (1998)

 Huebscher, M.C., McCann, J.A.:  A Survey of Autonomic Computing—Degrees, Models, 
and Applications. ACM Computing Surveys, 40 (3):7:1-28 (2008) 

 Müller, H.A., Kienle, H.M., Stege, U.:  Autonomic Computing: Now You See It, Now You 
Don’t—Design and Evolution of Autonomic Software Systems. In: De Lucia, A.; Ferrucci, 
F. (eds.): Software Engineering International Summer School Lectures: University of 
Salerno. LNCS, Springer-Verlag, Heidelberg, pp. 32–54 (2009) 

 Dobson, S., Denazis, S., Fernandez, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, 
F., Schmidt, N., Zambonelli, F.:  A Survey of Autonomic Communications. ACM 
Transactions on Autonomous and Adaptive Systems (TAAS) 1(2):223-259 (2006) 

11

Ultra-Large-Scale (ULS) 
Systems
 Premise
◦ ULS systems will place an unprecedented demand on 

software acquisition, production, deployment, management, 
documentation, usage, and evolution

 Needed
◦ A new perspective on how to characterize the problem
◦ Breakthrough research in concepts, methods, and tools 

beyond current hot topics such as SOA (service-oriented 
architecture) or MDA (model-driven architecture)

 Proposal
◦ New solutions involving the intersections of traditional software 

engineering and other disciplines including fields concerned with 
people—microeconomics, biology, city planning, anthropology

12



26/01/2013

3

ULS Sources
 Scale Changes Everything

by Linda Northrop
Director, Product Line Systems Program Software 
Engineering Institute
OOPSLA 2006 Presentation, Oct 24, 2006

 Ultra-Large-Scale Systems
The Software Challenge of the Future
by Linda Northrop et al. 
SEI Technical Report, June 2006
http://www.sei.cmu.edu/uls

13

 Describes
◦ the characteristics of

ULS systems

◦ the associated challenges

◦ promising research areas and topics

 Is based on new perspectives needed to address 
the problems associated with ULS systems.

ULS Research Agenda

14

L. Northrop. Scale Changes Everything. OOPSLA 2006

Research Approach

15

Define 
Characteristics

Propose
Research

Identify 
Challenges

Research Approach

16

Define 
Characteristics

Propose
Research

Identify 
Challenges

Micro/Macro 
Economics 

Game Theory

Evolutionary 
Biology

Ethnography

City Planning

Distributed 
Cognition

Complexity 
Science

Characteristics of 
ULS Systems
 Ultra-large size in terms of
◦ Lines of code
◦ Amount of data stored, accessed, manipulated, and refined
◦ Number of connections and interdependencies
◦ Number of hardware elements
◦ Number of computational elements
◦ Number of system purposes and user perception of these 

purposes
◦ Number of routine processes, interactions, and “emergent 

behaviours”
◦ Number of (overlapping) policy domains and enforceable 

mechanisms
◦ Number of people involved in some way
◦ ……

17

What is an ULS System

18

 A ULS System has unprecedented scale in some of 
these dimensions
◦ Lines of code

◦ Amount of data stored, accessed, manipulated, and refined

◦ Number of connections and interdependencies

◦ Number of hardware elements

◦ Number of computational elements

◦ Number of system purposes and user perception of these purposes

◦ Number of routine processes, interactions, and “emergent behaviours”

◦ Number of (overlapping) policy domains and enforceable mechanisms

◦ Number of people involved in some way

ULS systems are interdependent webs of software-intensive systems, 
people, policies, cultures, and economics.



26/01/2013

4

Scale Changes 
Everything
 Characteristics of ULS systems arise because of their 

scale
◦ Decentralization

◦ Inherently conflicting, unknowable, and diverse requirements

◦ Continuous evolution and deployment

◦ Heterogeneous, inconsistent, and changing elements

◦ Erosion of the people/system boundary

◦ Normal failures

◦ New paradigms for acquisition and policy

19

These characteristics may appear in today’s systems,
but in ULS systems they dominate.

These characteristics undermine the assumptions
that underlie today’s software engineering approaches.

Today’s Approaches
 The Engineering Perspective—for large scale software-

intensive systems

◦ largely top-down and plan-driven

◦ requirements/design/build cycle with standard well-defined 
processes

◦ centrally controlled implementation and deployment

◦ inherent validation and verification—at design time

 The Agile Perspective—proven for smaller software projects

◦ fast cycle/frequent delivery/test driven

◦ simple designs embracing future change and refactoring

◦ small teams and retrospective to enable team learning

◦ tacit knowledge

20

Today’s approaches are based on perspectives that fundamentally do not 
cope with the new characteristics arising from ultra-large scale. 

From Buildings to Cities
 Designing a large software system is like 

building a single, large building or a single 
infrastructure—power, water distribution

21
Ruins under Rome: In Rome’s Basement, National Geographic, 2006

• Rome was not built in 
a day.

• It takes a long time to 
do a job properly. 

• You should not expect 
to do it quickly.

ULS Systems Operate
More Like Cities
 Built or conceived by many individuals over long periods 

of time (Rome)
 The form of the city is not specified by requirements, 

but loosely coordinated and regulated—zoning laws, 
building codes, economic incentives (change over time)

 Every day in every city construction is going on, repairs 
are taking place, modifications are being made—yet, the 
cities continue to function

 ULS systems will not simply be bigger systems: they will 
be interdependent webs of software-intensive systems, 
people, policies, cultures, and economics

22

New Perspectives
Are Needed

23

The mentality of looking backward doesn’t scale.

“The older is not always a reliable model for the newer, 
the smaller for the larger, or the simpler for the more 
complex…Making something greater than any existing 
thing necessarily involves going beyond experience.”

Henry Petroski
Pushing the Limits: New Adventures in Engineering

Change of Perspective
 From satisfaction of requirements through 

traditional, top-down engineering

 To satisfaction of requirements by regulation of 
complex, decentralized systems

24

With adaptive systems
and feedback loops 

The system shall do this 
… but it may do this … 
as long as it does this …

How?


