
29/01/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted

 Mon, Feb 4
◦ Norha Villegas: Context Management and Self-Adaptivity for

Situation-Aware Smart Software Systems
 Assignment 1
◦ Due Feb 4 (extension) due to submission challenges
◦ Assignment 1 instructions have been updated
◦ Submit by e-mail to seng371@uvic.ca — ideally one .pdf file
◦ Cite your sources
◦ Part I — Useful definitions
◦ Part II — Growing systems in emergent organizations
◦ Part III — Ultra large scale systems (ULS)

2

Reading assignments
 IBM Corporation: An Architectural Blueprint for

Autonomic Computing, Fourth Edition (2006)
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf

 Truex, Baskerville, Klein: Growing Systems in Emergent
Organizations. Communications of the ACM, 42(8):117-
123 (1999).
http://portal.acm.org/citation.cfm?id=310930.310984&coll=GUIDE&dl=GUIDE,ACM&CFID=224
0896&CFTOKEN=98671917

 Northrop, et al.: Ultra-Large-Scale Systems. The
Software Challenge of the Future. Technical Report,
Software Engineering Institute, Carnegie Mellon
University, 134 pages ISBN 0-9786956-0-7 (2006)
http://www.sei.cmu.edu/uls

3

Ultra-Large-Scale (ULS)
Systems
 Premise
◦ ULS systems will place an unprecedented demand on

software acquisition, production, deployment, management,
documentation, usage, and evolution

 Needed
◦ A new perspective on how to characterize the problem
◦ Breakthrough research in concepts, methods, and tools

beyond current hot topics such as SOA (service-oriented
architecture) or MDA (model-driven architecture)

 Proposal
◦ New solutions involving the intersections of traditional software

engineering and other disciplines including fields concerned with
people—microeconomics, biology, city planning, anthropology

4

Research Approach

5

Define
Characteristics

Propose
Research

Identify
Challenges

Micro/Macro
Economics

Game Theory

Evolutionary
Biology

Ethnography

City Planning

Distributed
Cognition

Complexity
Science

Scale Changes
Everything
 Characteristics of ULS systems arise because of their

scale
◦ Decentralization

◦ Inherently conflicting, unknowable, and diverse requirements

◦ Continuous evolution and deployment

◦ Heterogeneous, inconsistent, and changing elements

◦ Erosion of the people/system boundary

◦ Normal failures

◦ New paradigms for acquisition and policy

6

These characteristics may appear in today’s systems,
but in ULS systems they dominate.

These characteristics undermine the assumptions
that underlie today’s software engineering approaches.

29/01/2013

2

From Buildings to Cities
 Designing a large software system is like

building a single, large building or a single
infrastructure—power, water distribution

7
Ruins under Rome: In Rome’s Basement, National Geographic, 2006

• Rome was not built in
a day.

• It takes a long time to
do a job properly.

• You should not expect
to do it quickly.

ULS Systems Operate
More Like Cities
 Built or conceived by many individuals over long periods

of time (Rome)
 The form of the city is not specified by requirements,

but loosely coordinated and regulated—zoning laws,
building codes, economic incentives (change over time)

 Every day in every city construction is going on, repairs
are taking place, modifications are being made—yet, the
cities continue to function

 ULS systems will not simply be bigger systems: they will
be interdependent webs of software-intensive systems,
people, policies, cultures, and economics

8

New Perspectives
Are Needed

9

The mentality of looking backward doesn’t scale.

“The older is not always a reliable model for the newer,
the smaller for the larger, or the simpler for the more
complex…Making something greater than any existing
thing necessarily involves going beyond experience.”

Henry Petroski
Pushing the Limits: New Adventures in Engineering

Change of Perspective
 From satisfaction of requirements through

traditional, top-down engineering

 To satisfaction of requirements by regulation of
complex, decentralized systems

10

With adaptive systems
and feedback loops

The system shall do this
… but it may do this …
as long as it does this …

How?

Evolution of
Software Systems
 Legacy systems
 Systems of Systems

11

Ultra-Large-Scale (ULS) Systems
Socio-Technical Ecosystems

Definitions
 Ecosystem
◦ In biology, an ecosystem is a

community of plants, animals, and
microorganisms that are linked by
energy and nutrient flows
interacting with each other and
with the physical environment.

◦ Rain forests, deserts, coral reefs,
grasslands, and a rotting log are all
examples of ecosystems

 Socio-technical ecosystem
◦ An ecosystem whose elements

are groups of people together
with their computational and
physical environments

◦ ULS systems can be characterized
as socio-technical ecosystems

 ULS system
◦ A system whose dimensions are of

such a scale that constructing the
system using development processes
and techniques prevailing at the start
of the 21st century is problematic.

◦ ULS system characteristics
 Decentralization
 Conflicting, unknowable, and diverse

requirements
 Continuous evolution and deployment
 Heterogeneous and changing element
 Erosion of the people/system boundary
 Normal failures of parts of the system

12
cf. Glossary in ULS Book

29/01/2013

3

From Systems of
Systems to Ecosystems

 A ULS system comprises a dynamic community
of interdependent and competing organisms in a
complex and changing environment

 The concept of an ecosystem connotes
complexity, decentralized control, hard-to-
predict reactions to disruptions, difficulty of
monitoring and assessment

13

In many ways, legacy systems are already
participating in socio-technical ecosystems

We Need to Think
Socio-Technical Ecosystems
 Socio-technical ecosystems include people, organizations,

and technologies at all levels with significant and often
competing interdependencies.

 In such systems there is

◦ Competition for resources

◦ Organizations and participants responsible for setting policies

◦ Organizations and participants responsible for producing ULS
systems

◦ Need for local and global indicators of health that will trigger
necessary changes in policies and in element and system
behavior

14

Decentralized
Ecosystems
 For 40 years we have embraced the traditional

centralized engineering perspective for building
software
◦ Central control, top-down, tradeoff analysis

 Beyond a certain complexity threshold, traditional
centralized engineering perspective is no longer
sufficient and cannot be the primary means by which
ultra-complex systems are made real
◦ Firms are engineered—but the

structure of the economy is not
◦ The protocols of the Internet were

engineered—but not the Web as a whole

 Ecosystems exhibit high degrees of
complexity and organization—but not
necessarily through engineering

15

ULS Systems Solve
Wicked Problems
 Wicked problem

An ill-defined design and planning
problem having incomplete,
contradictory, and changing
requirements.

 Solutions to wicked problems are
often difficult to recognize
because of complex
interdependencies.

 This term was suggested by H.
Rittel & M. Webber in “Dilemmas
in a General Theory of Planning,”
Policy Sciences 4, Elsevier (1973)

 Wicked problems are problems that
are not amenable to analytic,
reductionist analysis.

16

Characteristics of
Wicked Problems

 You don't understand the problem
until you have developed a solution
◦ There is no definitive formulation of the

problem.
◦ The problem is ill-structured
◦ An evolving set of interlocking issues and

constraints

 There is no stopping rule
◦ There is also no definitive Solution
◦ The problem solving process ends

when you run out of resources

 Every wicked problem is essentially
unique and novel
◦ There are so many factors and conditions,

all embedded in a dynamic social context,
that no two wicked problems are alike

◦ No immediate or ultimate test of a
solution

◦ Solutions to them will always be custom
designed and fitted

 Solutions are not right or wrong
◦ Simply better, worse, good enough, or not good

enough.
◦ Solutions are not true-or-false, but good-or-bad.

 Every solution to a wicked problem is a
one-shot operation.
◦ You can't learn about the problem without

trying solutions.
◦ Every implemented solution has consequences.
◦ Every solution you try is expensive and has

lasting unintended consequences (e.g., spawn
new wicked problems).

 Wicked problems have no given
alternative solutions
◦ May be no feasible solutions
◦ May be a set of potential solutions

that is devised, and another
set that is never even thought of.

17

An Architecture for Dealing
with Wicked Problems

 A dynamic hierarchy, constellation, or arrangement of
interacting system architectures

 Each dynamic arrangement has its own
◦ Value propositions

◦ Element types (including individuals and organizations) and
associated properties (such as self-interest and private values)

◦ Relations
 For example, those found in strategic games

◦ Theories
 For example, game theory

18
Mark Klein, SEI, 2008

