
31/01/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Announcements
 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Lecture notes posted
◦ Lab slides and activities are posted

 Mon, Feb 4
◦ Norha Villegas: Context Management and Self-Adaptivity for 

Situation-Aware Smart Software Systems
 Assignment 1
◦ Due Feb 4 (extension) due to submission challenges
◦ Assignment 1 instructions have been updated
◦ Submit by e-mail to seng371@uvic.ca — ideally one .pdf file
◦ Cite your sources
◦ Part I — Useful definitions
◦ Part II — Growing systems in emergent organizations
◦ Part III  — Ultra large scale systems (ULS)

2

Reading assignments
 IBM Corporation:  An Architectural Blueprint for 

Autonomic Computing, Fourth Edition (2006) 
http://people.cs.kuleuven.be/~danny.weyns/csds/IBM06.pdf

 Truex, Baskerville, Klein: Growing Systems in Emergent 
Organizations. Communications of the ACM, 42(8):117-
123 (1999). 
http://portal.acm.org/citation.cfm?id=310930.310984&coll=GUIDE&dl=GUIDE,ACM&CFID=224
0896&CFTOKEN=98671917

 Northrop, et al.: Ultra-Large-Scale Systems. The 
Software Challenge of the Future. Technical Report, 
Software Engineering Institute, Carnegie Mellon 
University, 134 pages ISBN 0-9786956-0-7 (2006) 
http://www.sei.cmu.edu/uls

3

Scale Changes Everything
 Characteristics of ULS systems arise because of their 

scale
◦ Decentralization

◦ Inherently conflicting, unknowable, and diverse requirements

◦ Continuous evolution and deployment

◦ Heterogeneous, inconsistent, and changing elements

◦ Erosion of the people/system boundary

◦ Normal failures

◦ New paradigms for acquisition and policy

4

These characteristics may appear in today’s systems,
but in ULS systems they dominate.

These characteristics undermine the assumptions
that underlie today’s software engineering approaches.

Change of Perspective
 From satisfaction of requirements through 

traditional, top-down engineering

 To satisfaction of requirements by regulation of 
complex, decentralized systems

5

With adaptive systems
and feedback loops 

The system shall do this 
… but it may do this … 
as long as it does this …

How?

We Need to Think 
Socio-Technical Ecosystems
 Socio-technical ecosystems include people, organizations, 

and technologies at all levels with significant and often 
competing interdependencies.

 In such systems there is

◦ Competition for resources

◦ Organizations and participants responsible for setting policies

◦ Organizations and participants responsible for producing ULS 
systems

◦ Need for local and global indicators of health that will trigger 
necessary changes in policies and in element and system 
behavior

6



31/01/2013

2

Decentralized
Ecosystems
 For 40 years we have embraced the traditional 

centralized engineering perspective for building 
software
◦ Central control, top-down, tradeoff analysis

 Beyond a certain complexity threshold, traditional 
centralized engineering perspective is no longer 
sufficient and cannot be the primary means by which 
ultra-complex systems are made real
◦ Firms are engineered—but the 

structure of the economy is not
◦ The protocols of the Internet were 

engineered—but not the Web as a whole

 Ecosystems exhibit high degrees of 
complexity and organization—but not 
necessarily through engineering

7

Characteristics of
Wicked Problems

 You don't understand the problem 
until you have developed a solution
◦ There is no definitive formulation of the 

problem.
◦ The problem is ill-structured
◦ An evolving set of interlocking issues and 

constraints

 There is no stopping rule
◦ There is also no definitive Solution
◦ The problem solving process ends

when you run out of resources

 Every wicked problem is essentially 
unique and novel
◦ There are so many factors and conditions, 

all embedded in a dynamic social context, 
that no two wicked problems are alike

◦ No immediate or ultimate test of a 
solution

◦ Solutions to them will always be custom 
designed and fitted

 Solutions are not right or wrong
◦ Simply better, worse, good enough, or not good 

enough.
◦ Solutions are not true-or-false, but good-or-bad.

 Every solution to a wicked problem is a 
one-shot operation.
◦ You can't learn about the problem without 

trying solutions.
◦ Every implemented solution has consequences.
◦ Every solution you try is expensive and has 

lasting unintended consequences (e.g., spawn 
new wicked problems).

 Wicked problems have no given 
alternative solutions
◦ May be no feasible solutions
◦ May be a set of potential solutions 

that is devised, and another 
set that is never even thought of. 

8

An Architecture for Dealing 
with Wicked Problems

 A dynamic hierarchy, constellation, or arrangement of 
interacting system architectures

 Each dynamic arrangement has its own
◦ Value propositions

◦ Element types (including individuals and organizations) and 
associated properties (such as self-interest and private values)

◦ Relations
 For example, those found in strategic games

◦ Theories
 For example, game theory

9
Mark Klein, SEI, 2008

Realization of a
Dynamic Architecture
 Feedback control system with

disturbance and noise input

10

Hellerstein, Diao, Parekh, Tilbury: Feedback Control of 
Computing Systems. John Wiley & Sons (2004) 

Why a New Perspective?
 There are fundamental assumptions that underlie 

today’s software engineering and software 
development approaches that are undermined 
by the characteristics of ULS systems.

 There are challenges associated with ULS systems that 
today’s perspectives are very unlikely to be able to 
address.

11

For the last forty years, engineering has been the 
dominant metaphor for software systems creation. 

ULS Systems vs. 
Today’s Approaches

ULS Characteristics Today’s assumptions

Decentralized control
All conflicts must be resolved and resolved 
centrally and uniformly.

Inherently conflicting, 
unknowable, and diverse 
requirements

Requirements can be known in advance and 
change slowly.  Trade-off decisions will be stable.

Continuous evolution and 
deployment

System improvements are introduced
at discrete intervals.

Heterogeneous, inconsistent, 
and changing elements

Effect of a change can be predicted sufficiently 
well. Configuration information is accurate and 
can be tightly controlled. Components and users 
are fairly homogeneous.

12



31/01/2013

3

ULS Systems vs. 
Today’s Approaches

ULS Characteristics Today’s assumptions

Erosion of the people/system 
boundary

People are just users of the system.
Collective behavior of people is not of 
interest. Social interactions are not relevant.

Failures are normal
Failures will occur infrequently.
Defects can be removed.

New paradigms for acquisition 
and policy

A prime contractor is responsible for system 
development, operation, and evolution (e.g., 
open source, community development of data 
and code)

13

ULS Challenges
 The ULS book describes challenges in

three broad areas:
◦ Design and evolution

◦ Orchestration and control
◦ Monitoring and assessment

14
Chapter 3 in ULS Book

Web as Context for the
Discussing ULS Challenges

 Assume the web as a ULS system
 Given the web as context, what are the 

implications for each of the challenges listed 
on the next nine slides?

 Which challenges are difficult or 
easy to resolve within the web context?

15

Specific Challenges in ULS 
System Design and Evolution
 Social activity for constructing computational environments
◦ How do we model interaction with a social context in a way that offers 

guidance for how to design and support ULS systems?

 Legal issues
◦ How do we deal with licensing, intellectual property, or liability concerns that 

arise due to the size, complexity or geographical distribution of a ULS system 
developed under multiple authorities? How will legal policies adapt?

 Enforcement mechanisms and processes
◦ How do we create enforcement mechanisms (i.e., governance) for a set of (legal, 

design, process) rules that support and maintain the integrity of the system? 
How do we negotiate exceptions (e.g., for SOA governance)?

 Definition of common services supporting the ULS system
◦ How do we define an infrastructure (a set of technological, legal and social 

services) that will be common to many elements of a ULS system?

16

Design and evolution
Orchestration and control
Monitoring and assessment

Specific Challenges in ULS 
System Design and Evolution
 Rules and regulations
◦ How will whole industries come together to agree on rules and regulations to 

ensure overall coherence and quality while still being sufficiently flexible to 
compete?

 Agility
◦ How can the groups responsible for ULS development, maintenance, and 

evolution be kept sufficiently agile to respond effectively to changes in 
requirements, system configuration, or system environment?

 Handling of change
◦ How can the processes for developing, maintaining, and evolving a ULS system be 

adapted to handle in situ design change and evolution rather than relying on 
static requirements preceding design and implementation?

 Integration
◦ How can we minimize the effort needed to integrate components built 

independently by different teams, with different goals, and at different times to 
create the current system?

17

Design and evolution
Orchestration and control
Monitoring and assessment

Specific Challenges in ULS 
System Design and Evolution
 User-controlled evolution
◦ How do we provide components and composition rules that 

give users the ability to create new, unplanned capabilities?

 Computer-supported evolution
◦ How do we provide automated methods to evolve ULS systems?

 Adaptable structure
◦ How do we create designs that are effective and robust even as 

requirements and the ULS environment change continually?

 Emergent quality
◦ How do we organize processes for producing ULS systems so 

that they converge on high-quality designs? How do we 
recognize emergent quality?

18

Design and evolution
Orchestration and control
Monitoring and assessment



31/01/2013

4

ULS Challenges
 The ULS book describes challenges in

three broad areas:
◦ Design and evolution

◦ Orchestration and control
◦ Monitoring and assessment

19
Chapter 3 in ULS Book

Specific Challenges in ULS
System Orchestration and Control

 Refers to the set of activities needed to make the 
elements of a ULS system work together in reasonable 
harmony to ensure continuous satisfaction of mission 
objectives

 Orchestration is needed at all levels of ULS systems and 
challenges us to create new ways for
◦ Online modification

◦ Maintenance of quality of service while providing necessary 
flexibility

◦ Creation and execution of policies and rules

◦ Adaptation to users and contexts

◦ Enabling of user-controlled orchestration

20

Design and evolution
Orchestration and control
Monitoring and assessment

Specific Challenges in ULS
System Orchestration and Control
 Online modification
◦ How can necessary adjustments to a system be made while the 

system is running, with minimal disturbance to user services?

◦ How can the changes be propagated throughout the system if 
necessary?

 Maintenance of quality of service while providing 
necessary flexibility
◦ How can the overall quality of service be maintained while 

enabling the flexibility to provide different levels of service to 
different groups?

 Creation and execution of policies and rules
◦ What policies and rules lead to effective solutions despite 

divergent viewpoints of stakeholders?

◦ How are such rules and policies created?

◦ How are they executed? 21

Design and evolution
Orchestration and control
Monitoring and assessment

Specific Challenges in ULS
System Orchestration and Control

 Adaptation to users and contexts
◦ How can the needs of users and stakeholders be discovered and 

understood?

◦ How can those needs be translated into execution-time 
modifications and adaptations?

◦ How can the context—both the user’s context and the physical 
context—be sensed, captured, and translated into adaptations?

 Enabling of user-controlled orchestration
◦ How do we provide components and composition rules that 

give users the ability to adapt and customize portions of the 
system in the field?

22

Design and evolution
Orchestration and control
Monitoring and assessment


