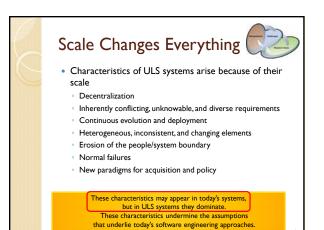
Welcome to SENG 371 Software Evolution Spring 2013

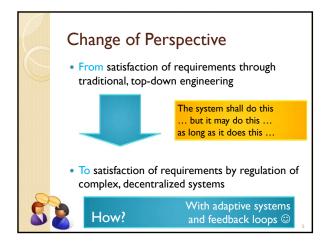
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng Professor, Department of Computer Science Associate Dean Research, Faculty of Engineering University of Victoria

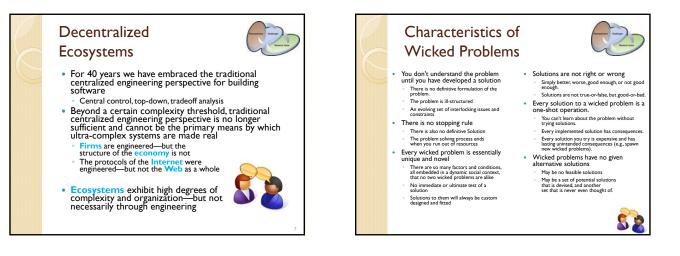
Announcements

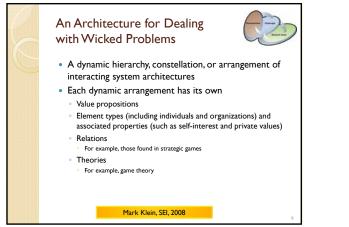
Course website

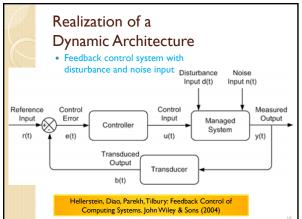

- <u>http://www.engr.uvic.ca/~seng371</u>
 Lecture notes posted
- Lab slides and activities are posted
- Mon, Feb 4
 - Norha Villegas: Context Management and Self-Adaptivity for Situation-Aware Smart Software Systems

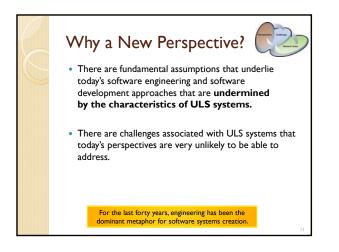

Assignment I

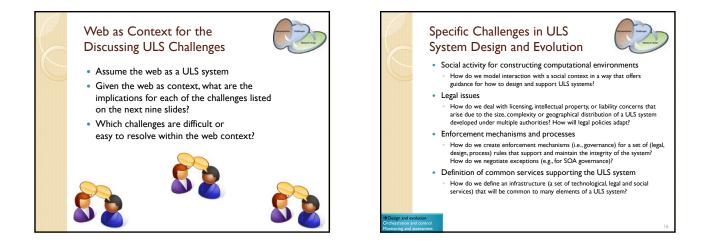
- Due Feb 4 (extension) due to submission challenges
 - Assignment I instructions have been updated
 - Submit by e-mail to <u>seng371@uvic.ca</u> ideally one .pdf file
 - Cite your sources
 - Part I Useful definitions
 - Part II Growing systems in emergent organizations
 - Part III Ultra large scale systems (ULS)

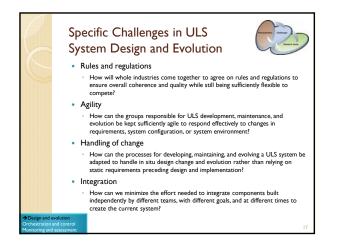

Reading assignments

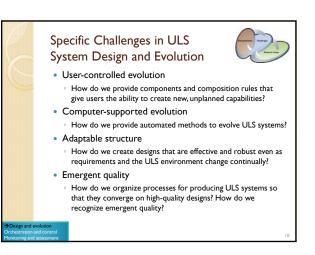

- IBM Corporation: An Architectural Blueprint for Autonomic Computing, Fourth Edition (2006) http://people.cs.kuleuven.be/~danov.weens/csts/IBM06.off
- Truex, Baskerville, Klein: Growing Systems in Emergent Organizations. Communications of the ACM, 42(8):117-123 (1999). http://printacm.org/citation.cfm?id=310930.310984&coll=GUIDE&d=GUIDEACMACFID=224
- Northrop, et al.: Ultra-Large-Scale Systems. The Software Challenge of the Future. Technical Report, Software Engineering Institute, Carnegie Mellon University, I 34 pages ISBN 0-9786956-0-7 (2006)

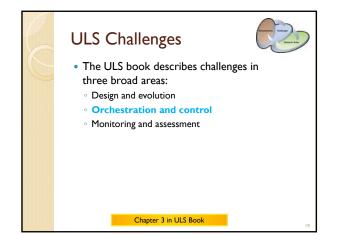









ULS Systems vs. Today's Approaches	
ULS Characteristics	Today's assumptions
Decentralized control	All conflicts must be resolved and resolved centrally and uniformly.
Inherently conflicting, unknowable, and diverse requirements	Requirements can be known in advance and change slowly. Trade-off decisions will be stable.
Continuous evolution and deployment	System improvements are introduced at discrete intervals.
Heterogeneous, inconsistent, and changing elements	Effect of a change can be predicted sufficiently well. Configuration information is accurate and can be tightly controlled. Components and users are fairly homogeneous.
	12


R	ULS Systems vs. Today's Approach	nes 🔁
	ULS Characteristics	Today's assumptions
	Erosion of the people/system boundary	People are just users of the system. Collective behavior of people is not of interest. Social interactions are not relevant.
	Failures are normal	Failures will occur infrequently. Defects can be removed.
	New paradigms for acquisition and policy	A prime contractor is responsible for system development, operation, and evolution (e.g., open source, community development of data and code)
		13

