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Heat pulse experiments revisited 
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This is a review of heat propagation - theory and experiment - in dielec- 
tric solids at low temperatures where the phenomenon of  second sound oc- 
curs. The review does not merely present a list of the various explanations 
of the observed phenomena. Rather it views them as special cases of a 
unified theory which is formulated within the framework of extended ther- 
modynamics of phonos. Field equations are derived by averaging over the 
phonon-Boltzmann equation and initial and boundary value problems are 
solved. Thus it became possible to achieve a full explanation of the obser- 
vations of  the heat-pulse experiments in which ballistic phonons, second 
sound and ordinary heat conduction compete. 

1 Introduction 

Heat conduction processes in solid bodies at rest may be described by in- 
dicating the temperature T in all points of the body as a function of  time. 
The field equation for T relies on the equation of  balance of internal energy 

O e + OQ~ = O, (1.1) 
Ot Ox k 

which has to be supplemented by constitutive equations for the density of 
energy e and for the heat flux Qk which depend on the material. 

At low temperatures the constitutive relation for the energy density reads 

e = aT 4 with a = constant. (1.2) 

The constitutive law for the heat flux Q~ is usually assumed to be of  the 
form 

OT 
Qk = - I t ( T )  , (1.3) 

Oxk 

where ~c is the heat conductivity. 
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Equation (1.3) is called Fourier's law and it leads to a parabolic differential 
equation for heat conduction, thus implying the paradox of heat conduction: 
Parts of an initially given local heat pulse will propagate with infinite speed 
through the body. 

For practical purposes the paradox of heat conduction is of no concern, 
if those parts of a heat pulse that have infinite speed are strongly damped. 
This is the case in all materials at room temperature. 

However, at low temperature damping may become unimportant and the 
predictions of the parabolic heat conduction equation become measurably false. 

A modification of Fourier's law can be derived from a model originally 
introduced in 1929 by Peierls [1] for the calculation of the heat conductivity. 
Peierls describes the thermal properties of dielectric solids by the phonon 
model. As we shall explain in detail in Chapter 2 phonons form a gas of 
quasi-particles bearing energy and momentum. 

Phonons may interact among themselves as well as with lattice imperfec- 
tions and with boundaries of the crystal. There are two different types of in- 
teraction processes: 
i) Normal (N-)processes, where phonon momentum is conserved, 

ii) Resistive (R-)processes, that do not conserve phonon momentum. 
Peierls realized that a Fourier heat conduction is due to R-processes and 

he was able to calculate the heat conductivity in dependence on temperature 
and on such crystal parameters as the number density of lattice defects. 

1 
Infact the heat conductivity is related to the frequency -- of R-proces- 

ses by the equation ZR 

c 2 

x = -- cv rn. (1.4) 
3 

c is the Debye speed of phonons defined as some mean value of longitudinal and 
transversal speeds of sound, cv = Oe/OTdenotes the specific heat per unit volume. 

A further study of the phonon model shows that Fourier's law (1.3) is not 
always sufficient for the description of heat conduction in crystals at low 
temperatures. It gives satisfactory results only for diffusive processes, i.e. when 
there are many more R-processes than N-processes. If, on the other hand, there 
are only few R-processes and many more N-processes, a wave-like energy 
transport may occur which is called second sound. 

In the presence of second sound, Fourier's law must be replaced by the 
equation 

OQi c2 OT 1 
- -  + - -  c ~  . . . .  Q i .  (1.5) 
Ot 3 Oxi rR 

Equation (1.5) together with the equation of balance of internal energy forms 
a hyperbolic system instead of the parabolic equations that follow from 
Fourier's law. In 1948 Cattaneo [2] proposed a similar system in order to pre- 
vent the paradox of heat conduction. 

For small values of ZR, i.e. low heat conductivity (1.5) reduces to Fourier's 
law. 
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For large values of zn, i.e. high heat conductivity, however, the right hand 
side of (1.5) may be neglected. In that case (1.5) together with (1.1) and (1.2) 
provides a wave equation for a temperature disturbance T = T(x, t) - To that 
propagates as second sound, 

O2T C 2 021~ 
- 0 .  ( 1 . 6 )  

Ot 2 3 0 X  i OX i 

This equation was first derived by Ward & Wilks in 1951 and it has stimulated 
experimental research to detect second sound ([3], [4], [5]). 

In the beginning those attempts have not been sucessful, because in addi- 
tion to second sound and diffusion there is a third mechanism for energy 
transport which is not included in Cattaneo's modification (1.5) of Fourier's 
law. This is the energy transport by ballistic phonons, i.e. phonons which travel 
through the crystal without any interaction. 

Ballistic phonons may occur at very low temperatures in very pure crystals. 
Careful investigations, made by Guyer & Krumhansl [6], [7], [8] have lead to 
the conclusion, that Cattaneo's equation (1.5) must be supplemented by terms 
including the frequency of momentum conserving N-processes. Pure second 
sound only appears in very pure crystals and in a small temperature range, 
see Section 5.1 of this paper. After the studies of Guyer & Krumhansl second 
sound was detected in crystalline helium He4 [9], sodium fluorid NaF [10], 
[11] and bismuth Bi [12]. 

During the last decade physicists have become interested in hyperbolic 
systems of partial differential equations for the description of thermodynamic 
processes, and they have replaced the traditional parabolic field equations of 
thermodynamics by hyperbolic ones. This approach is called "Extended Ther- 
modynamics". It offers a systematic guideline to non-equilibrium thermo- 
dynamics, avoiding some shortcomings of classical irreversible thermodynamics 
([13], [14]). Theories within extended thermodynamics usually contain Cat- 
taneo-like equations, similar to (1.5), and since crystals are among the few 
materials where deviations from Fourier's law are apparent, the study of sec- 
ond sound in crystals has gained new interest. 

Extended thermodynamics permits the treatment of non-linear phenomena 
in crystals, including shock waves or second sound moving into an already 
disturbed region. The proper description of such phenomena requires a re- 
examination of the theoretical foundation of heat transport in crystals. The 
present paper provides such a reexamination in the framework of extended 
thermodynamics based on the kinetic theory of phonons. 

We start this discussion in Chapter 2 with the introduction of the phonon 
model and of the phonon Boltzmann equation. 

Moments of the phase density may be interpreted as thermodynamic quan- 
tities for which equations of balance will be derived in Chapter 3. 

The collision integrals are approximated by the relaxation time ansatz due 
to Callaway [15]. The closure problem will be solved by the principle of max- 
imizing entropy ([16], [17]) which leads to a symmetric hyperbolic system of 
partial differential equations for an arbitrary number N of moments as ther- 
modynamic variables. 
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In Chapter 4 we shall introduce a typical heat pulse experiment and use 
the phonon model to interpret the results. This forms the basis for a com- 
parison of several thermodynamic theories in Chapters 5 & 6. We start in 
Chapter 5 with the hyperbolic system, derived in Chapter 3, and we shall 
demonstrate that it may serve as a good tool for the description of heat 
transport in crystals. In particular we shall answer the question of how many 
variables are needed for a sufficient description of a given experiment. 

In Chapter 6 we shall compare thermodynamic theories of other authors 
with experimental results and with the hyperbolic system of Chapter 3. It will 
turn out that many of those theories are included here as special cases with 
a restricted range of applicability. 

In the main part of this paper a simplified phonon model is used, describ- 
ing only phonons that travel with the Debye speed. Actually, however, phonons 
may travel with the speeds of  transversal and longitudinal sound waves. The 
proper description of heat transport would therefore be a mixture theory of 
phonons of three types - one longitudinal and two transversal. Such a theory 
is outlined in Appendix A. 

The occurence of moments of the phase density without a direct physical 
interpretation raises the question about how to choose their initial and bound- 
ary values. In Appendix B we shall introduce a simple approximation that 
yields a sufficient number of initial values for the simulation of a heat pulse 
experiment. 

Notations 

Throughout this paper the tensor index notation is used. A tensor A of rank 
n is represented by its components Ail . . . i  n. 

We shall often use the traceless symmetric parts of a tensor A which are 
denoted by A<il...i~>. 

The following conditions hold 

Al i l . . . k . . . l . . . i  n) = A ( i l . . . l . . . k . , . i  n) 

A( i l . . .k . . .k . . . in  ) : O. 

A traceless symmetric tensor  A(it . , . in  ) has 2n + 1 independent components. 
This holds also for n = 0, e.g. a scalar, and for n = 1, e.g. a vector. 

2 The phonon model 

2.1 The simple phonon model 

Energy transport processes in dielectric solids can best be described and inter- 
preted by using the phonon model that goes back to Einstein [18], Debye [19] 
and Peierls [1], [20]. The naive content of the model is shown in Fig. 2.1. 

The crystal shown in the left figure is represented here by a simple cubic 
lattice. The atoms vibrate around their equilibrium positions with temperature 
dependent amplitudes. The supply of energy to some place will first change 
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! 
Fig. 2.1. Real crystal and phonon model. 

. .  " J  

the amplitudes of vibration at that place and then give rise to elastic waves 
which transport the energy through the crystal. 

In the phonon model the actual crystal is replaced by a box, shown in the 
right figure, containing a gas of  phonons. The phonons represent the eigen- 
vibrations of  the atoms such that a vibration of frequency co with the wave 
vector k corresponds to a phonon of  energy he) and momentum hk . Thus 
transport processes in crystals may be treated analogously to transport pro- 
cesses in gases. The feasibility of this proposition was proved by Peierls in the 
afore-mentioned papers. 

Despite considerable analogies, there are also important differences between 
gases of  phonons and gases of real particles. Therefore phonons are called 
quasi-particles. The most important differences are: 

i) Phonons may be created and annihilated. Their number density at some 
time t and or a given place x is determined by the local temperature at 
that time and that place. 

ii) Energy is conserved in phonon interactions whereas generally momentum 
is not. For this reason phonon momentum is sometimes called quasi- 
momentum. 

Within the phonon gas there are three mechanisms of energy transport, viz. 

i) Energy transport by ballistic phonons. 
Phonons may travel through the crystal without any interaction and carry 
their energy along. 

ii) Energy transport by second sound. 
If  there is interaction and if the phonons conserve quasi-momentum, one ob- 
tains a wave like energy transport. This is similiar to a sound wave in or- 
dinary gases which is also transmitted by energy and momentum conserving 
collisions. Because of this similarity the process is called second sound. 

iii) Energy transport by diffusion. 
In most cases phonon interactions do not conserve quasi-momentum. The 
wave like nature of  the energy transport process is then damped after a 
very short time and there remains a diffusion process, analogous to or- 
dinary heat conduction. 

2.2 Extension of the simple phonon model 

The concept of  phonons originates from the theory of specific heat for dielec- 
tric solids. It is well-known that the vibrations of the atoms - assuming har- 
monic interatomic potentials - can be represented by their eigen-vibrations 
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or eigen-modes. If  there are N atoms then there are 3N eigenmodes with fre- 
quencies a~s(s = 1, 2 , . . .  3N). The possible energies of each eigenmode are 
given by 

e ~ = ( n s + 2 )  hc9 s, n s = 0 , 1 , 2 , 3  . . . . .  (2.1) 

h denotes Planck's constant and n~ is the number of energy quanta hco s of 
eigenmode s. In the phonon picture we say that there are n 0 phonons with 
the energy hogs. They behave like particles that obey Bose statistics. 

This model suffices for the description of thermodynamic equilibrium pro- 
perties like the specific heat of a crystal. However, the model is not sufficient 
for the description of non-equilibrium properties, which involve non-uniform 
fields and require the explicit localization of phonons in space. It was Peierls 
who made the necessary extension of the theory in 1929 [1]. 

Peierls considered traveling waves in the crystal using the eigenmode 
representation. He showed that waves with adjacent wave vectors in the range 
[k, k + Ak] may be combined to form wave packets localized within the space 
element [x, x +Ax] ,  where Ax is determined by ]Ak] .lAx[ = 2n. Each of 
these wave packets consists of a certain number of phonons with energy 
ho9 (k). 

The function og(k) is called the dispersion relation. It follows from the 
equations of motion for the atoms of the crystal. It is known that wave 
packets move with the group-velocity 0~o/0k and so do the corresponding 
phonons. 

In general 09 (k) is an anisotropic function of the wave vektor k, depending 
of the crystal structure and on the interatomic interaction. Even for simple lat- 
tices, this function is hard to determine. Therefore a simple isotropic dispersion 
law is often used for explicit calculations, namely 

og~(k) = c~k, o~ = 1, tl, t2, k = ~ .  k (2.2) 

where ~ denotes the three different propagation modes with velocities ca. 
There are one longitudinal mode l and two transversal modes tl, t2. 

For our purposes it is sufficient to deal with Debye's phonon model which 
takes into account only one representative mode. Thus we set 

09 = ck (2.3) 

where c is the Debye velocity defined as 

3 3 1 
c-3 = ~ -5" (2.4) 

c~=l Cc~ 

The extension to the more general case of three propagation modes will be 
outlined in Appendix A. 

Starting from these considerations Peierls suggested that non-equilibrium 
properties of a crystal may be described in analogy to the kinetic theory of 
gases. The state space of phonons is spanned by the momentum hk and the 
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position x and the phase density 

f ( x ,  t, k) dx dk (2.5) 

gives the number of  phonons in the vicinity of  x and k at some time t. 
Knowledge o f f  provides the energy density and its flux by integration, viz. 

0~  f dk (2.6) e(x,  t ) : =  ~ h e ) f d k  Qk(x, t ) : =  ~ ha) Okk 

As long as the temperature is low enough for e = aT 4 to hold we may take 
the range of integration to be the whole k space, see [21]. In a similar manner 
other thermodynamic quantities of  interest can be defined. This will be done 
in Chapter 3 in a systematic manner. 

The temporal development of  the phase density f is determined by the 
phonon Boltzmann equation. In this paper we are only interested in thermal 
energy transport problems, and for this reason we restrict the attention to rigid 
bodies, in which case the phonon Boltzmann equations reads 

_ am Of Of + - S ( f ) .  (2.7) 
Ot Okk Ox~ 

The production density S includes interactions of phonons among themselves 
and with lattice imperfections as well as with the boundaries of  the crystal. 

Peierls [1], [20] showed that, if the atoms of the crystalline lattice interact 
linearly there is no phonon-phonon interaction at all, and the corresponding 
production density vanishes. But a non-harmonic cubic term in the interatomic 
potential implies a production density due to three-phonon interactions: Either 
one phonon decays into two or two phonons combine to become one. Energy 
is conserved so that we have 

he) '  + he)" = he ) "  and he) '  = he)" + he)"  (2.8) 

Peierls showed, that there are similiar relations for the momenta of  the inter- 
acting phonons, viz. 

hk '  + hk"  = h k "  + hG and hk '  = hk"  + h k "  + hG, (2.9) 

respectively. Thus momenta are not conserved unless G equals zero. If it does, 
we speak of  normal phonon scattering or N-processes. The processes with 
G .  0 are called Umklapp processes or U-processes. 

The interactions of phonons with lattice imperfections - i.e. dislocations 
and impurities - and boundaries do not conserve phonon momentum either 
although both conserve energy*. 

Processes where phonon momentum is not conserved are comprehensively 
called resistive processes or R-processes. 

Guided by these considerations we shall formulate the relaxation time ap- 
proximation of  the production density S which was introduced by Callaway 
[15], see Section 3.4. 

* For more details see the excellent textbook "Physics of Phonons" by Reisland 
[22] 



10 W. Dreyer, H. Struchtrup 

3 T h e r m o d y n a m i c s  

3.1 General scheme 

3.1.1 Variables, equations of balance 

The thermodynamic description of transport processes relies on the phonon 
Boltzmann equation (2.7). We start with the assumption, that a few 
macroscopic densities 

UA(X, t) = ~ ~A(k) f ( x ,  t, k) dk (A = 1, 2 . . . .  N) (3.1) 

are sufficient to describe the thermodynamic state of a crystal satisfactorily. 
The number of the densities uA, viz. the value of N must be determined so 
as to provide a theory appropriate for the description of  experimental results. 
The determination of N needed for the understanding of the heat-pulse experi- 
ment is one of the objectives of this paper. 

We choose N densities uA as thermodynamic variables and proceed by hav- 
ing N arbitrary at first. Thus we obtain a hierarchy of  equations of balance 
for the variables uA which results from the phonon Boltzmann equation after 
multiplication by T A and integration over the k-space. The generic form of 
these equations of balance is given by 

OuA Of A~ 
- -  + - -  = PA (A = 1, 2 . . .  N ) .  (3 .2 )  
Ot Oxk 

The fluxes fAk and the productions PA are defined as 

003 
fak = I TA 7 7  f dk, PA = I ~a S ( f )  dk. 

ot~k 
(3.3) 

In order to obtain field equations for the variables uA from the equations of 
balance (3.2) we have to relate the fluxes and the productions to the variables 
uA. Such relations are called constitutive equations. A characteristic property 
of extended thermodynamics is a system of partial differential equations of 
first order as field equations. Therefore the constitutive equations for fA~ and 
PA are assumed to be of  the form 

fa~=fa~(UB), PA =*0A(UB). (3.4) 

It is important to note that there are no gradients nor rates in the constitutive 
equations. 

A solution of  the system of  field equations (3.2) and (3.4) for a given in- 
itial and boundary value problem is called a thermodynamic process. 

If  there is no satisfactory agreement between the theory with a given N and 
experiment we increase the number of variables. This procedure differs from 
the more common alternative one, in which gradients of  UA are added to the 
list of variables. 
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An important task of thermodynamics is the determination of the con- 
stitutive functions fag and PA. In principle there are two ways to proceed 
- phenomenological extended thermodynamics [13] 
- phonon thermodynamics. 

Both are equivalent. We shall describe both methods and start with a brief 
description of the phenomenological theory. 

3.1.2 Constitutive theory, part I: Phenomenological extended thermo- 
dynamics 

The phenomenological constitutive theory relies on the entropy principle which 
may be summarized in three parts. 

i) The solutions of the field equations (3.2), (3.4) are such that they also 
satisfy the additional balance law 

Oh O~k 
- -  + - -  = , 7 ,  ( 3 . 5 )  

Ot Ox k 

h is the entropy density, (O~ the entropy flux and a the entropy produc- 
tion. 

ii) h, (ok and a are given by constitutive functions that depend only on the 
variables. Thus we have 

h = h(UA), (ok = (~k(UA), a = 6(uA) .  (3.6) 

iii) The entropy density is required to be a maximum in equilibrium, which 
is defined as a process without any productions. In non-equilibrium the 
entropy production has to be positive. 

O2h 
negative definite, a ____ 0. (3.7) 

OUA OUB 

The evaluation of the entropy principle leads to the conclusions, see [17] 
for details. 

Oh t O(Of~ N 

=E lgA -- OA A , fAk - OAA (7 AA PA > 0 ,  (3 .8 )  
A=I  

where the potentials h', (O~ for uA and fAk are defined as 

N N 

h' = h - ~ A A UA, (O[~ = (Ok -- ~ AAUAk. (3.9) 
A=I A=I  

The newly introduced quantities AA are called Lagrange multipliers; they may 
depend on UA and it is approppriate to use them as variables, instead uA. 

The equations (3.8)1,2 imply integrability conditions of the form 

OUA OUB Of Ak Of Bk 
- , - . ( 3 . 1 o )  

OAB OAA OAB OA A 
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The equations (3.10)1 may serve to eliminate the Lagrange multipliers. The 
invertibility of the transformation UA ~ A A  is guaranteed by (3.7) 1 which im- 

OUA 
plies - -  - negative definite. 

OAB 
The equations (3.10)2 are restrictions on the fluxes. Such restrictions are 

the proper objective of extended thermodynamics. The productions PA are 
restricted by (3.8)3, which however, yields only some inequalities. 

We conclude this survey of phenomenological extended thermodynamics 
with the remark, that if the constitutive functions are determined accordingly, 
the resulting field equations form a symmetric hyperbolic system. This is a 
desirable property because it guarantees finite speeds of disturbances and well- 
posedness for Cauchy problems. 

3.1.3 Constitutive theory, part II: Phonon extended thermodynamics and the 
entropy maximum principle 

In the following sections we shall derive the explicit forms of the constitutive 
equations 

fa~; = fA~:(UB), PA = PA(UB). (3.11) 

In phenomenological extended thermodynamics we have just seen how these 
functions are restricted by the entropy principle. Now our calculation of the 
functions (3.15) relies on the knowledge that fAk and PA are represented by 
the integrals 

0co 
fAk = ~ gtA ~ f dk, PA = I ~PAS(f) dk. (3.12) 

In order to obtain from (3.12) functions of the form (3.11) we need to know 
the phase density in the special form 

f(x,  t, k) =f(UA(X, t), k) ,  (3.13) 

which we will derive from the entropy maximum principle [16]. Furthermore we 
shall prove, that this procedure of maximizing entropy leads to the same results 
as those of phenomenological extended thermodynamics. 

We have already mentioned that the phonons are Bose particles. For such 
particles the entropy density h is defined as 

( f  (1 l f )  (1 l f ) )  h = - k8 f In 1 f _ Y + -- in + -- dk, (3.14) 
Y Y Y 

where Boltzmann's constant is denoted by kB and y = 3/8 n 3. 
Forming Oh/Ot and eliminatingOf/Ot by the phonon Boltzmann equation 

we are led to 

Oh + Oq~ (7, (3.15) 
Ot Ox~ 
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a relation which is derived here, while in phenomenological thermodynamics 
it was postulated. This procedure permits the identification of the entropy flux 
and the entropy production as 

I O c o ( f  1 (1 1 f )  (1 1 f ) )  (P~=-kB ~ In --y f - y  +--y In +--y dk 

(3.16) 
+ 1 f ) - l n l f ) s ( f ) d k  a = k B f ( l n ( 1  y Y 

The entropy maximum principle states: The phase density f(UA(X, t), k) 
follows by maximizing the entropy density (3.14) with respect to f under the 
constraint of prescribed values of the variables uA according to (3.1). We take 
care of the constraints by introducing Lagrange multipliers AA and obtain by 
evaluation of the isoperimetric problem 

fN =f(ul,  u2 ... uN, k) - Y withy = __1 N exp Z - 1 kB E ~ctA AA" (3.17) 
A = I  

as the phase density that maximizes the entropy. Next we evaluate the integrals 

0co 
UA = ~ FtAf dk fAk= ~ ~PA ~ f dk (3.18) 

using the special form (3.17) of the phase density. After we have carried out 
the integrations we use (3.18)1 to calculate the Lagrange multipliers as func- 
tions of the variables. These functions serve to eliminate the AA'S in (3.18)2. 
Thus we obtain the desired constitutive functions fAk =J~K(UB). 

Although it is difficult to obtain explicit forms it is an easy matter to prove 
that the phase density (3.17) implies the results of the entropy principle of ex- 
tended thermodynamics. Indeed, we form OUA/OAB and Of AK/OAB and obtain 

Ou A _ 1 I ~a g"B yexpY, dk (3.19) 
OAB kB ( e x p Z -  1) 2 

OfAk _ 1 ~ OCO y Z 
OA~ kB ~ ~ gATe (expZ - 1) 2 dk. (3.20) 

Inspection shows that Oua and Ofak - -  are symmetric in A and B and that 3uA 
is negative definite. OAB OAB OAB 

Furthermore we conclude from (3.19) and (3.20) that there exist potentials 
for u A and fAk. Calculation shows that these potentials are given by h" and ~o~ 
defined as in phenomen01ogical extended thermodynamics, see (3.9). 

In Section 3 we shall discuss the form of the production densities implied 
by the entropy maximum principle. 

It will turn out that they are in accordance with the entropy principle of 
phenomenological thermodynamics. 
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3.2 Specific forms of balance equations 

3.2.1 The 9 moment theory 

We proceed with the interpretation of the variables Ua which we shall use in 
the following. Since we are interested in energy transport processes we start 
the hierarchy of equations (3.2) with the balance of energy. Therefore our first 
variable ua should be the energy density and the first flux f~k the energy flux, 
viz. 

U 1 ..~ e = f he ) f  dk  = ch f k f  dk. 
(3.21) 

f lk = Qx; = l he) 3 ~  f dk = c 2 j h k J  dk.  
Okk 

The last integral is the momentum density of phonons. The hierarchy proceeds 
with the balance of momentum. We define 

u2,3,4 = Pi = h I k i f  dk  and 
(3.22) 1 

f2,3,4,~ = Nik = hc~ ~ k i kk f  dk.  

It will prove to be convenient to decompose the momentum flux Nik into an 
isotropic part, which is related to the energy density and a deviatoric part ac- 
cording to the equation 

e 
Nik = ~ 'Sik + N<ik>. (3.23) 

If we were to stop here - with the thermodynamic state being given by the 
four variables e and Pi -- ballistic energy transport would not be included at 
all. Moreover only a few aspects of second sound could be described. We shall 
discuss this in detail in Chapter 5. 

Therefore we continue and consider the deviatoric part of the momentum 
flux N~ij> as the next variable. Thus the next density and its flux are given by 

S 1 U5 . . . . .  9 = N ( i j )  = ch ~ k ( i k j )  f d R  

(3.24) 

S f5 . . . . .  9, k = m<ij) k = c2h ~ k ( ikDkkf  dk.  

If  we stop now, the situation will turn out as follows: The balance equations 
read 

Oe c2 3pk - - +  - - = 0  
Ot 3x k 

Opi 1 Oe _ _ + - - - - + - - - -  
3t 3 3X i 

ON(q) q- 3m<ij)k 

Ot Oxk 

ON(ik) - -  Pi (3.25) 
Oxg 

- -  e ( i j> .  
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The vanishing production in (3.25)i represents conservation of energy. 
The description of diffusion and second sound by the system of equations 

is in almost perfect qualitative agreement with experiments, in particular the 
important properties of ballistic energy transport are included. However, there 
is no quantitative agreement. Therefore we cannot stop here. 

3.2.2 The generic equation of balance 

We set up the generic equation in our hierarchy by choosing 

I (k) n-1 1 TA . . . . .  h k<i I kiz . . .  kin ) . . . . .  * (3.26) 

[ ' c '~  n - 1  
The generic term h [ ~ 1  k<il, ki 2 . . .  

and flux as follows - k ]  

l~<il.., in ) = h k(i  l . . .  k i n > f  d k ,  

(3.27) 
f~il...i,~>~ = h k(i ~ . . .  k i n > k k f  d k .  

The structure of the flux is such that it reduces to the densities lt(i~...in_l ) 
and n(i~...ink) by the recurrence formula 

f ( i l . . . i n ) k  ~ C 2 I~l 2n + 1 bl((il""in-1)f~in)k nt" u(i~" "'ink) (3.28) 

The equation of balance corresponding to (3.27) reads 

Ol~(i 1. .ink) OU(il . . . in ) "~ C2 Ft Ol, t ( ( i l . . . in_~)  + . --  P ( i l . . . i n ) '  

Ot 2n + 1 Oxin > Ox k 
n = 0, 1, 2 . . . .  M. (3.29) 

Here M denotes the number of indices in the highest tensor variable. The total 
number of variables, N, is then given by 

M 
N ~ (2n + 1) = (M + 1) 2. (3.30) 

n=0 
The first 9 equations for n = 0, 1, 2 in this set are those of equation (3.25). 

Neither the system (3.25) nor the generic system (3.29) is closed. Indeed 
in (3.25) the last equation of the system contains M<ij>k, which is not among 
the variables e, Pk ,  N<ij>. Generally in (3.29) it is U(il . . . iMk)  in the last equa- 
tion which is unrelated a priori to the variables bl( i l . . . in) ,  n = O, 1 . . . .  M.  The 
same is true for all productions. 

kin> in this list corresponds to a density 

* This choice of variables follows from the use of the Debye model (o) = ck) .  The 
general case is discussed by Larecki & Piekarski [23]. 
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This fact makes it necessary to discuss specific procedures of closure and 
constitutive equations. 

3.3 Specific form of constitutive equations 

3.3.1 Equilibrium, definition of temperature 

In phenomenological extended thermodynamics equilibrium is defined as a 
process with vanishing productions. This is equivalent to the statement that 
the phase density must be an isotropic function of the wave vector k in 
equilibrium. It follows from (3.17) with ~A given by (3.26) that the 
equilibrium phase density assumes the form 

Y 
fl~ = (3.31) 

Since this should be the well-known Bose distribution, the equilibrium value 
of the Lagrange multiplier Aa is equal to the inverse of the absolute 
temperature T, and the remaining Lagrange multipliers A2, . . .  A N vanish in 
equilibrium. 

By insertion of the Bose phase density (3.31) into the integrals (3.1), (3.3)i 
which define the variables and fluxes we obtain in equilibrium 

4 7~5k 4 T4" (3.32) 
ul = e - 5 c3h 3 

All other densities and all fluxes vanish in this case. 
Equation (3.32) is the Debye law for phonons, and we consider this as the 

defining equation for temperature, even in non-equilibrium. In other words 
temperature means energy density of phonons. 

3.3.2 Phase density near equilibrium 

For the calculation of the constitutive relations we use an approximate form 
of the phase density. Since all Lagrange multipliers with the exception of 

1 
A 1 = - vanish in equilibrium we set 

T 

1 
AA = ~ OA1 + )~A with )tAi e = 0. (3.33) 

Linearising f in (3.17) in the )~'s we obtain 

f = f l E -  hc  E •A " (3.34) 
A = I  
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With our choice of q/A in (3.26) we obtain from (3.1) for 2A 

2 = 0  

2 1 ( 2  j + 1) 
j = l  

~(il...in ) = _4eTc2n_4n ! U(i l . . . in ) ,  (l'l = 1, 2 . . . .  M ) .  

We recall 
l l( i l . . . iM+l ). With the present form (3.34) for f we obtain 

i 1~r 1,~(il...iM+l ) = hC ~ k(q. .  kii~+l) f dk = O. 

(3.35) 

that closure of the system (3.29) requires the determination of 

(3.36) 

3.3.2 Linear representation of productions 

For the calculation of the productions (3.3)2 

Pa = ~ ~PA S ( f )  d k  (3.37) 

we need to know the explicit form of the collision function S, which has been 
derived for various interaction mechanisms by several authors (see e.g. 
[1], [20], [22], [24]). However, due to the complexity of S nobody has used the 
exact representations in theories concerning instationary heat conduction pro- 
cesses. Instead most authors have used an expression for S which is based on 
relaxation time arguments originally introduced by Callaway in 1958 [15]. The 
correspondence between Callaway's expression and the exact collision function 
is discussed by Simons in [25]. Before we motivate the relaxation time ansatz 
we remind the reader that two different interaction mechanisms contribute to 
the collision function. Phonons may interact in N-processes and R-processes. 
While both types of processes conserve energy, only the former conserves 
momentum as well. The corresponding collision functions are denoted by SN 
and SR and we write 

S = SN + SR. (3.38) 

SN and SR, respectively, must satisfy 

h(.oS R d k  = O, ~ t'lfZ)S N d k  ~- O, ~ h k i S  N d k  = 0 (3.39) 

while ~ hkiSR d k  may not be zero. 
We shall now motivate the explicit forms of SN and SR. We start with SN 

and consider a small volume element of the crystal that is characterized by 
N variables e, Pi, ua (A = 5 . . . .  N) .  Due to normal processes, which conserve 
energy and momentum, the state e, Pi, UA will relax as 

e, Pi,  uA (A ..= 5 . . . .  N) N-p~oc ..... �9 e, Pl,  O. (3.40) 

In phase space the state on the left hand side is described by the phase density 
f u  = f ( e ,  Pi, UA (A = 5 . . . .  N ) ,  k) while the right hand side is described by 
f4 = f ( e ,  Pi, O, k). 
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Thus we may write 

1 
SN -- ( f - -  f4) ,  (3.41) 

TN(k) 

where 1/~N is the collision frequency for normal processes of phonons with 
wave vector k. rN(k) is called the relaxation time for N-processes. 

Due to resistive processes that do not conserve momentum the state 
e, Pi, uA (A = 5 . . . .  N)  will relax as 

e, Pi, u.4 (A = 5 . . . . .  N)  R-pr~ e, 0, 0. (3.42) 

In phase space the right hand side is described by the phase density 
f l  = f ( e ,  O, O, k). 

Thus we may write 

1 
SR -- ( f - -  f l )  (3.43) 

rR(k) 

1 
where - -  is the collision frequency for resistive processes of phonons with 

rR(k) 
wave vector k and v~ is the relaxation time for R-processes. 

We read off  the functions f4 and f l  from (3.17) and obtain 

Y Y 
f4 = , f l =  (3.44) 

) hc A ~ a ) k + _ _ A i ( 4 l k  - 1  exp A~ 1) - 1 
exp kB 

The Lagrange multipliers A{ 4), A} 4) and A{ 1) must be determined so that the 
conservation laws are satisfied. 

The collision frequencies rR and rN are functions of temperature T and of 
the wave vector k. These functions may be calculated from the properties of  
the crystal [24], [26-29].  

For our purposes it is sufficient to consider rR and rN as mean relaxation 
times which depend on the temperature only. Their temperature dependence 
is obtained from experimental results: rR follows from heat-conductivity 
measurements and r N from heat pulse experiments. 

Therefore the productions may be written as 

1 1 
Pd, . . . i , )  = - -  j T d l . . . i , ) ( f - f l ) d k -  __ j T ( i l . . . i , ) ( f - f 4 ) d k ,  

r R rN 

L (  ... _ _ P ~ l . . . ~  = - "~ , . . .~  - S ~ ,  ~ f ~  dk) - 1 0 % . . . ~  f ~%...~>f~ dk) 
T R TN 

n = 0, 1 . . . .  M (3.45) 

Because of the isotropy of f l  the integrals I ~(i~...i~)fl dR vanish for all ~ 's  
except when n = 0; in that case, by (3.39)1, we have 

e = j hckf l  dk .  (3.46) 
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With the definition of temperature (3.32) we conclude from (3.44) that 
A(1) = 1/T  holds, which implies the identity of fl  with the equilibrium phase 
density fe .  

The conservation laws (3.39)2,3 for N-processes now read 

e = ~ hckf4 dk,  Pi = ~ hk i f4  dk ,  (3.47) 

and therefore the Lagrange multipliers in f4 are functions of the energy densi- 
ty and the momentum density 

A(4) = A(4) (e, Pi), Ai (4) = Ai (4) (e, Pi).  (3.48) 

Because of the representation theorems of isotropic functions we must then 
have 

~(i l . . . in) f  4 d k  =An(e ,  pZ)p(il. . .pin> n = 2 . . . .  M.  (3.49) 

These contributions to the production densities (3.45) are non-linear in the 
momentum density and will be neglected in the present linear theory. 

In summary we obtain for the productions 

1 1 
P = 0; Pi = - - -  Pi; P(il...in ) - -  bl(il...in), n = 2 . . . .  M,  (3.50) 

rR z 

where we have introduced the total collision frequency 

1 1 1 
- + - - .  ( 3 . 5 1 )  

r rR rN 

We close this section with the proof that Callaway's expression (3.38) with 
SN, SR given by (3.41) and (3.43) leads to a non-negative entropy production 
in accordance with phenomenological thermodynamics. We prove this state- 
ment starting with the representation (3.16)2 for the entropy production, viz. 

a = k e ~ ( l n ( l + - - y l  f ) - - l n  --yl f )  S d k .  (3.52) 

Introducing f from (3.17) into (3.52) we obtain for the bracket in the integrand 
1 

the expression --kB ~tAZIA" Therefore, by (3.37), we have a = ~A AAPA just 

like in the phenomenological theory. The inequality r => 0 may be proved ex- 
plicitly by insertion of 

S = SN + SR = . . . .  1 ( f - - f4 )  1 ( f - - f1 )  (3.53) 
rN rR 

into (3.52). Thus we obtain two contributions to a called aN and aR, one due 
to N-processes and the other one due to R-processes. Both are positive. Indeed 
we have 

S - ( "  (1 aN = kB f - - f 4  n --  f - -  In + -- dk. (3.54) 
rN y y 
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By use of  the conservation properties (3.39) this expression may be rearranged 
to give 

1 
f -  - f f4 

= kB ( f - - f 4  In Y dk. (3.55) O" N 
J 

"(N f41ff4 
Y 

This is non-negative because inspection shows that the integrand is non- 
negative; it vanishes for f =f4 .  An identical calculation leads to a R -  0. 

3.3.3 Summary of field equations 

We summarize the field equations by introducing the productions (3.50) into 
the equations of  balance (3.25) and (3.29). Thus we obtain for the case of  
9 fields, i.e. M = 2, 

Oe C 2 0 p k  
- - +  - - = 0  
Ot Ox~ 

Opi 1 0 e  ON<ik) 1 
- - + - - - - +  = - - - P i  
Ot 3 0 X  i OX k r e 

ON<q> + 2 cZ Op(i 1 
= -  --  N<i:> (3.56) 

Ot 5 Oxj> r 

and for the case of  a generic number of  fields 

OR(il... ink) OU(il'"in) "t" C 2 n Olg((il...in_l) "~ 

Ot 2n + 1 Oxi. > OXk I 
O for n = O  

1 
- - -  Pi for n = 1 

rR 

1 
r U('x'"i"> for l<n<__M. 

(3.57) 

An important  special case of  these field equations concerns one dimensional 
heat conduction processes. In that  case the equations may be expressed in the 
form 

OU A M OU B 1 
- -  nt" E ~'AB . . . .  blA, A = O, 1 . . . .  M (3.58) 
Ot Ox rA 

B = 0  

where 

) 1 ( 0 1 1 1 )  
UA= , P l , N ( m , u ( m > . . .  and - -  = , . . . . . .  (3.59) 

rA r R r r 
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The matrix ~Ae has the form 

(~AB = 

-0 1 

oq 0 

c~ 2 

1 

0 1 

~3 0 1 
" ,  , � 9  

0 

0 

�9 . 0 

O/M_ 2 0 1 

O~M_ 1 0 

i 2 
where O/i = - -  C 2. 

4i 2-1 

(3.60) 

There are only two materially dependent parameters in the system which 
remain to be determined by experiments - the mean relaxation times rR 
and rN. 

3.3.4 Relation between re and heat conductivity Jc 

The heat conductivity ~c for dielectric crystals at low temperatures has been 
carefully measured�9 Figure 3.1 shows a plot of K(T) for NaF, taken from [30]. 
We distinguish two branches, an ascending one at low temperature which starts 
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out proportional to T 3 and an exponentially descending branch for large 
temperature. In between the curve reaches a maximum, whose height goes up 
with increasing purity of the crystal. 

The relation beetween rn and tc makes use of the momentum balance ap- 
propriate to the stationary case, viz., by (3.56) 2 

re OT ON<ij> (3.61) 
Pi = -- - -  Cv - -  - -  T R  - -  

3 Oxi Oxj 

The easiest way to proceed is by ignoring the last term in this equation. Thus, 
Pi,  or the energy flux Qi = c2pi is proportional to the gradient of T and the 
factor of proportionality is the heat conductivity to. We obtain 

rR 
x = - -  c2cv.  (3.62) 

3 

This is the desired relation between ~r and rR which will serve us to determine 
the temperature dependence of re. 

The omission of the last term in (3.61) is not without subtile consequences, 
because the well-known phonon Poiseuille flow depends on that term [8]. It 
is possible to show that (3.62) is correct, if the heat conduction is properly 
one-dimensional. 

4 The heat pulse experiment 

4.1 The initial and boundary value problem 

The heat pulse experiment was introduced into crystal physics by Gutfeld & 
Nethercot in 1964 to detect second sound which was already predicted in 
earlier theories by Ward & Wilks [3, 4, 5]. Gutfeld & Nethercot failed to see 
evidence of second sound; however, they did discover ballistic phonons. In the 
following years experimental and theoretical examinations culminated in the 
discovery of second sound in solid helium 1966 [9], [31], sodium fluoride 1969 
[10], [11] and bismuth 1972 [12]. 

The experimental arrangement is shown schematically in Figure 4.1. 

Q s  1:3 = f  C'1::) 

Fig. 4.1. The heat pulse experiment 

•  x : L  
I I 

I I 
T s I::) 

? 

"t 
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Two opposite surfaces of the crystal are covered with metal films, which 
serve as heater and thermometer, respectively. The heat Q(t) supplied to the 
left hand side of the crystal at x = 0 is furnished by an electric current. 

The change of the resistance of the metal film at the right hand side of 
the crystal is taken as a measure for T(L, t). 

If  we consider the arrangement as a one-dimensional heat conduction prob- 
lem, the initial and boundary values that can be controlled are 

UA(X, 0) = 0 for A = 0 , 1 , 2  . . . .  M 

Q(0, t) = cZp(0, t) = f ( t )  Q(L, t) = c2p(L, t) = O. 

(4.1) 

(4.2) 

Inspection of  the N field equations (3.58) shows that the conditions (4.1), (4.2) 
provide a unique solution only in the 9 field case. 

4.2 Expected phenomena 

Before we start to discuss the experimental results we describe the expected 
phenomena by interpreting the phonon-model.  The energy supplied at the 
heater gives rise to the production of new phonons carrying this energy. The 
kind of  energy transport which follows depends strongly on the collision- 
frequencies of  the various processes. As was explained before in Section 2.1. 
we distinguish between three main transport mechanism: ballistic phonons, 
second sound and diffusion. Now, having discussed relaxation times and 
collision frequencies we may be more specific in identifying those three 
mechanisms. 

i) Ballistic phonons request low temperature and pure crystals. The frequen- 

cies of both N- and R-processes vanish, i.e. 1 1 - - ~ 0 , - - ~ 0 .  
rN rR 

As all phonons travel with the same speed c we expect to detect the heat 
pulse at the thermometer with a delay t~ = L/c. 

ii) Second sound: Temperature is high enough to make phonon-phonon in- 
teraction with momentum conservation a frequent event. But still pure 
crystals are requested to lower the resistance. In terms of  the corresponding 

1 1 
frequencies this means - -  ~ 0% - -  ~ 0. 

T N 75 R 

iii) Diffusion: phonons are frequently scattered on dislocation and impurities. 
t 

Thus we have - -  ~ oo. 
zR 

4.3 Experimental results 

Now we consider experimental data from pure (Fig. 4.2) and very pure 
(Fig. 4.3) NaF single crystals, reported by Jackson et al. [11] and Jackson & 
Walker [30]. 



24 W. Dreyer, H. Struchtrup 

I 

T, 

I I I I 

I I I  I ~ I 

9 . 6  = 

.-o~ 

O- "$ 
�9 c -  

-5 
n 

i I I I I I 
1 2 3 ~ 5 6 1 2 3 ~ 5 

Arr iva l  t ime ( l~s) Ar r iva l  t ime (p,s) 

Fig.4.2./4.3. Heat pulses in pure NaF [30] and in very pure NaF [11] 

1 2 . 5  ~ 

IS.0 ~ 

17.3 ~ 

6 7 

In all curves the temperature T(L, t) at the thermometer is plotted versus 
time t. It is not clear from the paper [30] which measure of temperature has 
been used. Anyway the vertical axis is scaled differently for the different 
curves, so that nothing can be learned from a comparison of the heights of 
the peaks in the figures. 

The fastest peak in all three curves, denoted by L, is induced by ballistic 
phonons travelling with the speed of a longitudinal sound wave, which is in- 
dependent of temperature. 

The peak which arrives next, denoted by T, is induced by ballistic phonons 
travelling with the speed of a transversal sound wave, which is also indepen- 
dent of temperature. 

The third peak that appears only at 13 K and 14.5 K has been interpreted 
as partially developed second sound. 

The second sound peaks in Figure 4.2 are followed by long tails. These are 
created by R-processes and represent the diffusive part of the heat pulse. 

We proceed to discuss the curves of Figure 4.3 which represent the ex- 
perimental findings in a crystal of very high purity. 
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At 9.6 K there are few N-processes and we observe only the two ballistic 
peaks. At 12.5 K there is only one peak, shifted so far to the right to be due 
to ballistic phonons. Therefore that peak is due to the propagation of second 
sound. The transversal ballistic peak is absent. 

At still higher temperatures the second sound peak has been shifted to later 
arrival times proving that the speed of second sound depends on temperature. 

5 T h e o r i e s  o n  h e a t  c o n d u c t i o n  in  c r y s t a l s  

The experimental data have indicated that all three phenomena, namely 
i) ballistic phonons 

ii) second sound 
iii) diffusion 
may occur simultanously. An appropriate theory should therefore be able to 
describe these phenomena simultaneously as well. We shall present such a 
theory ignoring, however, the distinction between longitudinal and transversal 
ballistic phonons. 

This chapter is organized as follows: First we compare the reported ex- 
perimental results with the "9-field-theory" based on the equations (3.56). 
After having discussed the advantages and shortcomings of that theory we 
consider the "N-field case". Finally, we discuss previous theories on heat 
transport processes and compare their predictions with ours. 

5.1 The 9-field-theory o f  extended thermodynamics 

5.1.1 Comparison of theory and experiment 

The 9-field-theory is the simplest case of the N-field-theory where both relaxa- 
tion times "c N and vR occur allowing the description of N- and R-processes. 

In the one dimensional case the field equations for the variables e = aT 4, 
Pl = P and N<a~> = N read, see (3.58) 

De C2 0]9 
- - +  - - = - 0  
Ot Ox 

_ _  1 0 e  ON 1 O p + _ _ _ +  . . . .  P 
Ot 3 0 x  Ox "c R 

ON 4 Op 1 
- - - 1 - - -  C2 - -  = - - -  N .  (5 .1 )  
Ot 15 Ox r 

The initial and boundary values for the heat pulse experiment are given by 
(4.1) and (4.2). We have solved the system for e(x,  t ) =  eo + ~(x, t) with 
eo = aT e, ~ = 4aT 3 T, T = T - To, using Laplace transforms analytically with 
a numerical evaluation of the inverse Laplace transformation. 
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The value for the relaxation time rR at the reference temperature To is 
taken from heat conductivity data corresponding to the crystal of Fig. 4.2 [30] 
as was explained in Section 3.3.4. The relaxation time z is adjusted so as to 
obtain a good fit between the calculation and the experimental T(L, t) curves 
in Fig. 4.2. Figure 5.1. shows the result; it is plotted for 

zR = ( t5 .4;  10.4; 7.4) At;  r = (3.0; 2 . i ;  2.0) At. 

We conclude that there is a good qualitative agreement with the results 
reported by Jackson & Walker [30] in Figure 4.2. 
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The second peak which appears in Figures 5.1 b/c  has been interpreted as 
partially developed second sound (see Section 4.3). 

This interpretation ought to be checked; it may be checked by testing 
whether the second peak disappears if the second sound is "switched off" by 
setting r N = 0% i.e. r = rn. Indeed it does as is illustrated by Figure 5.2. In 
that figure the drawn-out line is identical to the one of  Figure 5.1. b., it cor- 
responds to rR = 10.4, r = 2.1. The dashed figure corresponds to 
rR = r = 10.4, so that no second sound can occur. Accordingly no second 
peak is observed as we have expected. Note that the dashed curve has a very 
high ballistic peak. This is understandable from the fact that with no N-pro- 
cesses, the ballistic peak is not as strongly dissipated as with N-processes. 

Next we study the influence of  the frequency of N-processes on the 
development of  the original pulse. We vary rX for fixed large rR = 30 At  ap- 
propriate to the properties of  the very pure crystal to which the data in 
Fig. 4.3 refer. 

For large values of  rN(~'N = 4At)  there is only a ballistic pulse comparable 
in width to the original pulse. If rN is decreased to 2At a second sound pulse 
appears which absorbs the ballistic pulse completely when we decrease rN fur- 
ther. We note that the second sound pulse shows a marked broadening com- 
pared to the original pulse; also its position shifts to the right for higher 
temperature i.e. the second sound speed decreases with temperature. Once 
again we obtain good qualitative agreement between theory and experiment. 
Indeed this agreement is evident between the four curves of  Figure 4.3 and 
the curves of  Figures 5.3. a, c, d. 
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Curves like the one in Figure 5.3. b. which show ballistic and second sound 
properties have not been recorded among the experimental data of Fig. 4.3. 
The 9-field-theory implies that such a curve should appear in the range be- 
tween To = 9.6 K and To = 12.5 K. 

Sofar we have plotted arrival times of pulses, because this is what ex- 
perimentalists have registered. Now we proceed by discussing a different aspect 
of  this heat transport phenomenon: We plot the temperature field resulting 
from the pulse for different times as it travels down the crystal. Figure 5.4 
shows curves T(x, t i )  , t i = 5i At (i = 1 . . .  13) for a crystal with r R = 8 At, 
r =  1At, A t =  10-7 s. 

In the beginning the pulse moves ballistically into the crystal followed by 
a tail. With increasing time the ballistic peak is damped more and more by 
N-processes, while a second sound peak develops, see Figures 5.4. b, c, d. At 
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t = 20 At, Figure 5.4.d. ,  the ballistic peak is completely absorbed by the sec- 
ond sound peak. The propagation o f  this peak can be followed along the 
crystal in the Figures 5.4. c - i .  Starting with t = 25 At, Figure 5.4. g., the back 
o f  the second sound peak develops a hump due to resistive processes. This 
hump becomes more and more pronounced and eventually it absorbs the sec- 
ond sound peak, see Figures 5.4. k, 1, m. There remains diffusive spreading of  
temperature without any noticeable propation. 
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The array of Figures 5.4 is particularly instructive - more so than the one 
of Figure 5.3 - in that it demonstrates the successive development of all three 
mechanisms ballistic, second sound and diffusive. The ballistic effect 
dominates the early development, while diffusion dominates the end. In bet- 
ween, during a brief period we observe the propagation of second sound. All 
this is well-described by the 9-field theory. 

5.1.2 Dispersion Relation 

For further discussion of the 9-field-theory we shall introduce plane wave solu- 
tions of  (5.1) 

e = e 0 + ~ exp i(g2t - q x ) ,  p = p  exp i ( f2 t  - q x ) ,  N =A3 exp i(s - qx )  (5.2) 

to obtain the dispersion relation 

r ( r  l )  1 + - - + i  I 2 -  

= - -  ( 5 . 3 )  q2 3 c2 9 
1 + - -  irf2 

5 

f2 and q are frequency and wave number, respectively, and ~, p, N denote the 
complex amplitudes of the fields. The phase velocity Vph and damping coeffi- 
cient c~ are defined as 

f2 
, c~ = - I m ( q ) .  ( 5 . 4 )  v p h -  Re(q) 

We shall now investigate the dispersion relation for several limits of  the relaxa- 
tion times. 
i) Ballistic phonons: rR ~ ~ ,  rN--' c,. In this limit we obtain for the phase 

speed 
r " - "  

VPh = ~f3 C, (5.5) 

which has to be identified with the velocity Vbaa of a ballistic peak. In- 
deed, careful inspection of  the plots 5.3. a - c  shows that the ballistic peak 
propagates with this speed. 

/-7-_ 

The value Vball = ~ J 3  C indicates a shortcoming of  the 9 field theory, 

because ballistic phonons should travel with the Debye velocity c. * We shall 
later show, see Section 5.2, that this deficiency can be overcome by taking 
more variables into account. 

* Recall that we can only have one ballistic peak here, because transversal and 
longitudinal speed have been subsumed in one Debye speed. 
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ii) Second sound: rR ~ oo, rN ~ 0. In this limit we obtain the velocity of un- 
damped second sound, 

1 
vii = ~ -  c. (5.6) 

An undamped second sound with velocity vzl given by (5.6) was never 
observed in experiments. Therefore the requirement re---' 0% rN ~ 0 is not 
met in nature. Hence we will discuss the dispersion relation for the weaker 
requirement 

ref2 >> 1, i.e. rt2 = "CN(2 , and TN(2 ~ 1. (5.7) 

The dispersion relation may now be expanded to give 

q2 = 3 (22 (  l c  2 54 "CNz R i (I2-ZR + -- "t'Ns . 1  54 (5.8) 

From (5.8) we conclude that the condition 

1 1 
- -  ~ ( 2 ~ - - ,  ( 5 .9 )  
re rN 

which is equivalent to (5.7), guarantees an almost vanishing imaginary part, 
thus allowing an almost undamped second sound wave with velocity 

vii= ~ -  + 5 

The condition (5.9) is called window condition and was first discovered by 
Guyer & Krumhansl in 1964 [6]. Only after their careful analysis of (5.9) sec- 
ond sound in crystals was observed by Ackermann et al. ([9], [31]). The inter- 
pretation of the window condition (5.9) is as follows: The crystal must be of 
large purity and at low temperature so that there are only few resistive pro- 
cesses. However, the temperature must not be too low, because that would pre- 
vent enough normal processes to satisfy rX ~ "OR. Therefore the condition 
(5.9) is generally not satisfied. If  it is satisfied this can only be in a very small 
range of temperature. Furthermore, the initial heat pulse must contain the fre- 
quencies ;2 that satisfy (5.9) for given rR and T N. 

5.2 The N-field-theory of extended thermodynamics 

5.2.1 Ballistic phonons 

We have seen that - according to the 9-field theory - the ballistic phonons 
had the wrong speed. All other aspects, i.e. second sound and heat diffusion 
were satisfactory, even quantitatively, as put in coincidence by the comparison 
of the Figures 5.1 and 5.2 and by the preceding calculation of the values v H. 
Therefore we have to modify the 9-field theory so that the ballistic speed 
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comes out right and the other aspects of heat propagation remain unchanged. 
This is the subject of  the present section. 

It will turn out that the N-field theory described in previous chapters 
satisfies this requirement provided that N is big enough. In particular for large 
values of N the ballistic speed becomes equal to c. In the ballistic limit 
(rR -~oo, rN~  ~ )  the one dimensional field equations (3.58) reduce to 

OuA OUB - - + ~  ~AB--=O, 
Ot Ox 

B 

A,B  = 0, 1 . . . .  M, N = M +  1. (5.11) 

These equations describe undamped waves with phase velocities that are the 
eigenvalues of the matrix ~AB given by (3.60). Since the entries in ~AB are 
fully specific, we may calculate all of  its eigenvalues for any given N, albeit 
only numerically, the biggest among the eigenvalues is plotted as a function 
of N in Figure 5.5. Its value represents the ballistic speed ball appropriate to 
the N-field theory. 
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Fig. 5.5. Dependence of the ballistic velocity on the number of variables 

We conclude that Vball tends to c with an increasing number of variables�9 
From about 30 one-dimensional variables on we may set VbaU ~ c. Thus in the 
one-dimensional case a theory with not less than 30 variables is needed for 
a proper description of the ballistic peaks. 

For the three-dimensional case this means that we need all moments 

{e, Pi ,  U<iti 2> . . . .  , lg<il . . . in ) for n = 2, 3 . . . .  30} 

for the description of processes where ballistic peaks appear. Unfortunately the 
variables u<ii> . . . .  , u<i, i,,> have no easy physical interpretation and thus 

. . . .  1 2 1 ' "  lv l  . �9 

their lmtlal and boundary values cannot be controlled an the experiment. This 
is a serious problem, which however, may be overcome by the assumption that 
the phonons which are created at the heater travel ballistically into the crystal 
at first. The resulting 'ballistic initial values' will be discussed in Appendix B. 
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5.2.2 The N-field theory in the limit ZN--" 0 

While we have seen that the proper discription of ballistic phonons requires 
a many moment theory, we proceed to show that for small values of rU, i.e. 
high frequency of  N-processes, the number of  variables may be drastically 
reduced. 

For rU ~ 0 we have from (3.51) 

1 1 1 1 
- + - -  = - -  ( 5 . 1 2 )  

r rN rR rN 

Therefore we may neglect in the system (3.57) for n __> 2 the time derivatives 
Ou(q.,.in)/Ot in comparison to the production densities (-U(il . . . in)/r) 
(--U(il...iN)/ZN). With the omission of the time derivatives it follows from 
(3.57) with n = M that we have 

U ( i l ' " i M )  = --TNC 2 M ON((i l . . . i3d_l  ) (5.13) 
2M + 1 OXiM } 

Introduction of (5.13) into (3.57) with n = M - 1 and neglecting terms of sec- 
ond order in rN yields 

M - 1 Ou<~i~...iM_2) 
/2(iI.-.iM_ l) ~--- --TAr c2 

2 ( M -  1) + 1 Oxi~t_l) 

By successive insertion into the next formula we obtain a simple expression 
for U(il...i,) for n = 2, 3 . . . .  M in terms of a gradient of the next lower mo- 
ment, viz. 

b/(il" in) = --TNC 2 fl Obl((il""in-I>, n = 2, 3, . . .  M. (5.14) 
�9 2 n  + 1 Oxi,> 

Thus in the limit rU ~ 0 the N-field-system may be reduced to the 9-field- 
system 

Oe Opi 
- -  + c  2 = 0  

Ot Oxi 

Opi 1 0 e  ON<ij>_ 1 
- -  + - -  - -  + P i  ( 5 . 1 5 )  
Ot 3 0 x  i Oxj 72 R 

c2 20p< i 1 
_ -  _ _  N ( i j )  

5 0 x j )  T N 

This system must be compared with the 9 field system (5.1) of Section 5.1. 
The only difference is that here the time derivative of  N ( i j )  is missing in the 
last equation. This is a result of  the present approximation. 

We conclude from these considerations that the 9-field-theory is sufficient 
in the case rN ~ 0. 
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5.2.3 The limiting cases rN-~ 0 and r e - - '  0 

I f  rN is in fac t  equal to zero  the  sys tem (5.15) r educes  to  the  4 - f i e l d - t h e o r y  

Oe c 2 0 p i  
- - +  - - = 0  
3t 3xi 

3p i 1 3e 1 
- -  + - Pi. 
3t 3 3x i rR 

(5.16) 

For big values of  rR the system (5.16) describes a second sound wave with 

velocity vn = c/x[3. 
We note that such a speed is never observed in experiments and conclude 

from this that we cannot have rN = 0. Thus the 4-field-theory is not suffi- 
cient for the description of second sound. 

Next we consider the case rR --' 0 which is realized in crystals of  high im- 
purity. The system (5.16) is still applicable, irrespective of  the value for ZN. 
However, we may now neglect the time derivative Opi/Ot in (5.16)2 and come 

Table 5.1. 

Limits of  described phenomena 
relaxation times 

3e c2 3pi "r R --* 0 diffusion 
Fourier:  - -  + - -  = 0  

3t 3x i 

1 3e 1 
- -  - -  Pi 

3 3X i "(R 

Oe c 2 0pi rN ~ 0 diffusion 
4-field: - -  + - -  = 0  

3t 3x i r R E (0, w) second sound 
(without taking care 

3pi 1 3e 1 for N-processes) 
- -  + -- Pi  
3t 3 3x i r R 

3e c2 3pi rN ~ 0 diffusion 
9-field: - -  + - -  = 0  

Ot 3xi rR E (0, oo) second sound 
(ballistic phonons with 

Opi 1 Oe ON(u ) 1 wrong velocity) 
- -  + - -  - -  + = - - - - P i  

3t 3 0 x l  Oxj rR 

ON<~j~ + c2 2 @<~ _ _ 1 N.j> 
Ot 50xj> r 

N-field: Oun OuB 1 z N e (0, oo) diffusion 
- -  + ~ A B  - -  ~ -  - -  blA 3t Ox z A ZR ~ (0, oo) second sound 

ballistic phonons 
A , B = I . . . N ,  N > 3 0  
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up in this special case with Fourier's classical law of  heat conduction 

Oe Opk 
- -  + C  2 - -  = 0 ~  

Ot Oxk 

1 Oe 1 Oe OT 
P k -  3 TR Oxk 3 rR OT Oxk (5.17) 

We close this section with the Table 5.1 which lists the appropriate theories 
for some limits of the relaxation times. 

6 Review of  theories of  heat conduction in crystals 

6.1 Fourier's law 

In its early days the phonon picture was used to calculate the heat conductivity 
x in Fourier's law 

OT 
Qi = - K  Oxi (6.1) 

Major work on this subject was done by Peierls [1], [20], who had introduced 
the phonon picture. Among his successors we mention the outstanding work 
of  Callaway [15]. A competent review on this subject was written by Caruthers 
[29]. 

As we have seen in Section 5.2.3, Fourier's law is only appropriate in the 
case rR ~ 0. This condition is satisfied in most solids at normal temperature. 
Therefore Fourier's law is the appropriate tool for most heat conduction prob- 
lems. The shortcomings of  Fourier's law, e.g. the paradox of heat conduction 
become only apparent in very pure crystals and at low temperature. 

6.2 Second Sound 

6.2.1 Generic Scheme 

Here we shall discuss only theories of  second sound which are based on the 
phonon model. Phenomenological theories of  second sound and non-linear 
theories will be discussed separately in Section 6.4. 

Ever since Peierls introduced the phonon model into crystal physics in 1929 
many theories of  heat transport in crystals have grown out of  this model. The 
most successfull theories rely on the phonon Boltzmann equation which is 
usually combined with the Callaway approximation and Debye's dispersion law 
09 = c k ,  v i z .  

_ ki Of 1 1 
Of + c - ( f - f 4 )  - - -  ( f - f 1 ) .  (6.2) 
Ot k Oxi rN rR 
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While we have used an arbitrary number of  fields - and accordingly, an ar- 
bitrary number of equations of balance - for the description of heat 
transport processes, other authors choose only two fields, viz. temperature T 
and momentum density Pi. Accordingly they need only two equations of  
balance, those for energy and momentum. 

Oe C2 OPi - - +  - - = 0  
Ot Oxi 

Opi 1 0 e  ON<u ) 
+ - -  - -  + = P i "  

Ot 3 0 X  i OXj 

We recall that e, p~, N(ij) are moments of  the phase density f ,  

e = ~ hck fdk ,  Pi = ~ h k i f d k ,  N(iD = I he Okikj f d k  
k 

and the momentum production is given by 

(6.3) 

(6.4) 

1 
Pi = - ~  hki - -  ( f - f 1 )  dk. (6.5) 

rR 

Since the purpose of the theory is the determination of the temperature T and 
the momentum density Pi, the system (6.3) must be closed by constitutive 
equations which relate e, N.j> and Pi to T and Pi in a materially dependent 
manner. The formulation of these equations is dictated by the fact that e 
through Pi may be derived from the phase density. 

From our previous analysis we have concluded that for the proper descrip- 
tion of all aspects of heat transport it is imperative to have two relaxation 
times. In the equations (6.3)-(6.5),  however, only r R occurs explicitly, the 
relaxation time T• will appear as part of the constitutive assumptions. 

6.2.1 The work of Ward & Wilks 

We merely mention the early work of Tisza [321 and Landau [33] because it 
refers to second sound in liquid He II rather than in crystals. Whatever 
motivation for the development of the second sound in solids was drawn from 
this early work, seems spurious in retrospect. 

Nevertheless this work motivated Ward & Wilks [3], [4] in 1951 to for- 
mulate a theory of second sound in solids which is compatible with (6.3) pro- 
vided we set 

N<ij> = O and Pi = O. 

The resulting equation by Ward & Wilks are the equations of the 4-field-theory 
in the limit re ~ Qo, see Section 5.2.3. These equations cannot serve for a 
proper description of second sound because N-processes are not considered. 

Also the predicted speed c/x[3 was never observed. 
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6.2.2 The work of  Sussmann & Thellung 

The first authors who took the N-processes into account were Sussmann & 
Thellung in 1962 [34]. Neglecting the occurence of R-processes they solved the 
phonon Boltzmann equation 6.2 by means of the Chapmann-Enskog-method. 
The resulting constitutive equations read* 

Pi=O 

1 
Nij = 3 ec~ij + N</j> (6.6) 

with 

oxiO (P e = aT 4 - -  TN c2 ~ -  i + 3 VNaT3 

N<ij)_ 2 rNC2 0 @ 4 07>) (6.7) 
----  5 OX<~ i J) + 3 7:NAT30xj " 

We recognize some distinctions to our system (5.15) which is also appropriate 
for rN ~ 0. Infact we have 

e =aT  4 

N<U> = _  2-- rNC2 0p<i (6.S) 
5 OXj> 

Obviously the differences result from the interpretation of the temperature. 
While in our definition (6.8)2 T is a measure for e, by virtue of the relation 
e = aT 4, Sussmann & Thellung consider this relation to be valid only in 
equilibrium. 

Because of  the neglect of R-processes the theory of  Sussmann & Thellung 
is not sufficient for the decscription of  second sound. 

6.2.3 The work of Guyer & Krumhansl 

The most important work on second sound in crystals was the one by Guyer 
& Krumhansl [6], [7], [8] because it pointed the way to a succesful observation 
of  second sound. The reason is that this was the first theory with both relaxa- 
tion times. 

Guyer & Krumhansl calculated an approximate solution of the phonon 
Boltzmann equation and obtained - in the limit of  small values of "oN - 

* Sussmann & Thellung consider three phonon modes, l, fi, t 2. For simplicity we 
have introduced the Debye speed in their equations. 
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the field equations (6.3) with the constitutive equations 

1 
Pi = - - -  Pi (6.9) 

rR 

1 
Nij = 3 efiij + N~j> with (6.10) 

Op~ 2 rNC2 0p(i. (6.11) e = aT 4 -  "gN c2 ~Xn, N( i j )=-  ~ Oxj) 

Thus Guyer & Krumhansl consider e to be equal to aT 4 plus a non- 
equilibrum contribution, much like Sussmann & Thellung do. However, not all 
is well, because when e is given by (6.11)I in the momentum flux the same 
expression must be used in the energy balance. This requirement is not 
reflected in the work of Guyer & Krumhansl. Except for this we recognize a 
marked similarity of the equations of Guyer & Krumhansl to our system 
(5.15). 

Guyer & Krumhansl were first to derive the window condition (5.9) from 
their equations. This led to the detection of second sound because it identified 
the temperature range, where second sound may be observed. 

From the discussion in this chapter we conclude that all theories presented 
here are special cases of the N-field-theory in the approximation valid for small 
values of VN. Discrepancies result only from different interpretations of the 
temperature. 

6.3 Ballistic phonons 

Ballistic phonons require large values of VN and accordingly equations of 
transfer of higher order, complete with their time derivatives, see Section 5.2. 
Therefore ballistic phonons are not covered by the theories discussed in Sec- 
tion 6.2. 

The best known theory of ballistic phonons is the theory by Rogers [35]. 
The important result in Roger's work is his dispersion relation for harmonic 
waves 

1 + - - + i  f ~ -  

qa 3~2 ZN zRf~ (6.12) 
= 7 1 + 3izD 

Roger's dispersion relation is nearly the same one as the one of the 9-field- 
theory, see (5.3), except for a different factor (3 instead of 9/5) in the 
denominator. In the limit of undamped second sound (rU ~ 0, r R --* co) the 

phase speed comes out as vll= c/x[3 whereas in the limit of ballistic phonons 
(rR ~ ~, rN --' c.) the correct phase speed %atl = c is obtained. By solving an 
initial value problem Rogers proved a good agreement between his theory and 
experiments. 
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Having said this we feel that a critical remark about Rogers' derivation of 
the dispersion relation (6.12) is in order. Rogers chose the Navier Stokes equa- 
tion of hydrodynamics as his field equation for phonon momentum. However 
he replaced the real bulk viscosity by a frequency-dependent complex quantity. 
In this way he derives a complex differential equation for the temperature. This 
is hard to understand. It may reflect ideas about internal relaxation or history 
dependence which, however, are not made specific. 

Beck & Beck [36] solved the phonon Boltzmann equation in Fourier space 
for an initial value problem. Instead of macroscopic field equations they ob- 
tain a dispersion relation, which they discuss in two limits: In the case of 
ballistic phonons (rR ~ 0% r N ~ oo) they obtain the speeds of longitudinal 
and transversal phonons as phase speeds. In the limit of second sound 
(rN ~ 0) their dispersion relation agrees with the 9-field-theory, if one intro- 
duces the Debye speed. 

We prefer the N-field theory of Chapters 1 -4  over the theories just discuss- 
ed. The N-field theory provides a hierarchy of balance equations derived from 
the phonon Boltzmann equation. Thus it makes explicit - by the time 
derivatives in the balance equations - whatever history dependence may occur 
in heat transport phenomena. 

6.4 Non-linear theories on heat transport in crystals 

In recent years second sound in crystals gained new interest because physicist 
became interested in non-linear phenomena, for example pulse propagation 
along temperature gradients [37] or the propagation of shock waves [38], [39]. 
Of course, these non-linear theories should contain the linear phenomena, for 
instance the heat pulse experiments. 

We proceed to examine some of these non-linear theories with respect to 
heat pulse propagations. 

Using the entropy maximum principle, Larecki derived the following equa- 
tions from the Phonon-Boltzmann equation [40] 

Oe C20pi 
- - +  - - = 0  
Ot Ox i 

- - + - - -  + - -  ( 3 z - l )  = - - - P i ,  Z -  1 
Ot 3 0 x i  Oxj tk2 ~ - )  re 3 3~] 4 e z " 

(6.13) 

Anile, Pennise & Sammartino [41] and Mtiller & Kremer [42] obtained the 
same system by phenomenological methods and Dreyer & Seelecke discussed 
its shock wave solutions [39]. This system is not appropriate for the descrip- 
tion of second sound with a temperature dependent speed, because its linear 
version is equivalent to (5.16); it predicts vn = c/x~3. 

Two further theories concerning second sound were published by Coleman 
& Newman [37], [43] and Ruggeri et al. [38]. Both theories were developed by 
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phenomenological considerations. In the linear case they reduce to 

Oe OQi 
- - +  = 0  
Ot Oxi 

OQi + U~ Oe _ U~ Cv Qi. (6.14) 
Ot Oxi ~c 

Here Qi is the energy flux, Cv is the specific heat per unit volume, K is the 
heat conductivity and UE(T) is a temperature-dependent speed. 

U~(T) is determined by identifying it with the pulse speed whose value is 
read off from the Figures 4.3. In this way Coleman & Newman found the 
analytic expression 

S 2 
UE z = A  + B T  n, n = 3 . 1 0 ,  A = 9 . 0 9 . 1 0 - 1 2  B = 2 . 2 2 . 1 0  -15 - -  

cm 2 ' 

s 2 

cm 2 K 

(6.15) 

for the temperature dependence of UE. As far as speeds are concerned this 
is a good formula. Indeed, in the limit T = 0 the speed Ue is equal to the 

speed of transversal ballistic phonons ct = 1/x/A and for higher temperatures 
it is equal to the speed of second sound. 

But the proper value of the speed is not all: We need an explanation for 
the broadening of the peaks in Figure 4.3. This broadening is not described 
by the equations (6.14). In order to demonstrate this we have calculated the 
prediction of these equations for the heat pulse experiment at T =  12.5 K, 
using the Coleman & Newman data. The result is shown in Figure 6.1. It 
shows a peak which is not broadened at all. On the contrary it is just as sharp 
as the heating signal at x = 0. Similar curves appear for all temperatures. 

x/HAt = 32.5 

0~5 

2 
~/CvH = S.48 At 

0.04 

0~3 

D.01 

-O.01 
20 40 ~0 80 I00 120 

t/At 

Fig. 6.1. T(L, t) according to [37], [38]. 
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This observation confirms our view that the pulses of Figure 4.3 are of  
different nature: At low temperature they are due to ballistic phonons and at 
higher tremperatures they are due to second sound. This fact is not reflected 
in the work of  Coleman & Newman. We have shown in Chapter 5 that both 
phenomena may produce their own peak at the same temperature and we have 
seen that the second sound peak broadens in the way the experiments observe. 

7 C o n c l u s i o n  

The irritating complexity of  heat propagation in dielectric crystals is due to 
the fact that over a wide temperature range three mechanisms of propagation 
are all competing, viz. 

ballistic phonons, 
second sound and 
diffusive heat conduction. 

We have shown here that it is possible to treat all three phenomena jointly 
on the basis of  the phonon Boltzmann equation combined with the Callaway 
ansatz. In this manner the above three mechanisms in their relative importance 
are controlled by only two relaxation times, r N and re. We have 

ballistic phonons rN --~ ~ r R --, oo 

second sound for rN ~ 0 re ~ c~ 

diffusive heat conduction rR --' 0. 

A difficulty is due to the fact that many moment equations of  the phonon 
Bolzmann equation are needed for a quantitative description of all observed 
phenomena. 

We have shown, however, that the case of  N = 30 one-dimensional equa- 
tions can still be handled and that it provides full agreement with experi- 
ments. 

Equipped with this knowledge we are able to classify the various attempts 
of  previous authors who have all tried to find~simpler field equations. We have 
discussed those previous attemps. All of  them are valid in some aspects, but 
unable to describe the full spectrum of  possibilities. Among the theories 
discussed in Chapter 6 there are those that correctly describe second sound and 
diffusive heat conduction, or only second sound, or ballistic phonons and sec- 
ond sound. Other theories describe all or some of these phenomena but they 
exhibit deficiencies - either quantitative or qualitative ones - in certain 
aspects. 

Having seen that the moment equations based on the phonon Boltzmann 
equation provide a satisfactory description of  all three mechanisms of linear 
heat transport we suggest that the study of non-linear effects be-based on the 
same principles. 
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Appendix  A 

Mixture theory of longitudinal and transversal phonons 

Up to now we have only considered the simple Debye model o ) =  ck where 
all phonons have the same speed. Now we want to take into account the 
distinction between longitudinal and transversal phonons. There are one 
longitudinal mode and two transversal ones. For all three of them we use a 
simple linear dispersion law, namely 

m~ = c~k, a = l, t 1, t 2 (A 1) 

and assume that the transversal modes are degenerated, meaning that both 
transversal modes have the same speeds c~ = eq = c t2 ,  

The phonon Boltzmann equation for the phase density f "  of mode c~ reads 

a f  ~ k~ Of ~ 
- -  + c  a - S  ~, c ~ = l , q ,  t2. ( A 2 )  
Ot k Ox~ 

For the collision term S~ we assume the relaxation time approximation (see 
Section 3.3.2) 

1 1 
S a = S~ + S ~ = -  r~ ( f a  - f ~ )  - Z~N (f~ - - iF)  (A 3) 

with 

Y Y 
f ~ =  , f ~ =  

(hc= At(1 ) - 1 e x p (  hc= Ar(4)k + - -  Aff(4)k - 1 
exp \ kB \ kB kB 

(A 4) 
1 1 

- -  and - -  are the collision frequencies of R- and N-processes for phonons 
r~ r~ 
of mode c~. 

We assume now that the collisions between longitudinal and transversal 
phonons will lead to equilibrium phase densities f~ ,  f ~  which are characteriz- 
ed by the same Lagrange multipliers, i.e. 

A(1) = AI (1) = A~ (1), A(4) = All (4) = Atl (4), Ai (4) = A/(4) = A~ (4) . (A 5) 

1 
Since A1 = - in the linear theory (A 5) states that both modes will have 

T 
the same temperature in equilibrium. 

The Lagrange multipliers must be determined from the conservation laws 
for energy in R- and N-processes and for phonon momentum in N-processes, 
namely 

E fhc~kS~dk=O,  E fhc~kS~dk=O,  E f h k i S ~ d k = O "  
a = l ,  tt , t  2 ce=l ,q , t~  a = l ,  tl , t  2 

(A 6) 
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As variables for the description of the thermodynamic state we choose 

% ( ~ ) ~ - ~  
u~ = I q / ~ f ~ d k  with q/~ = h [c~k, k i, ~ kokj> . . . .  

Variables with special physical meaning are 

k( i  I k i  2 �9 . . k i n ) , .  �9 . }. 

(A 7) 

u~ = e ~ -- energy density of mode e~ 

u2,3,4 = P F  - momentum density of mode c~ 
OL OZ u5 .... 9 =N<q> - momentum flux of mode c~. 

Using the same methods as in Section 3 of this paper we obtain the following 
system of  linear equations 

Oe' Op~ [ 1 1 {] 
- -  + c2i - 2 - + ( c3 e l -  r e t  ) 
Ot OX i TtR c3 + 2r~c 3 r~c3t + 2ZINC 

O p t +  1 • l + ON~ij> 1 p ~ _  2 5 z 
- (cz pi  - r 

ON{q) 2 Op{i + - -  c 2 
3t 5 Oxj) -4- OXk M ( i j k  ) + N ( i j )  

0<~, i . ) + d  " 0 4 <  ;._1) + _ + &~. ,.) 

Ot 2n + 1 3xi.> 3x k 

0d @[ [ 1 - - + C 2 - - =  + 1 ] (~2~l_ ~3e, ) 
A 

Op[ + 1 Oe t ON{ij> 1 1 
- -  - - -  + - p[ + ( c p p [ -  cTp[) 
Ot 3 Ox i Oxj rte rtNC5 t + 2rlxC5 l 

ON{q2 2 0 P { i  0 ' ( ~  7N) ~ ..]_ __ c2  _ _  + - -  M ( i j k  ) = -  + N ( i j )  
Ot 5 Oxj> Ox~ 

ou~i, in) + d  n o ~ , ,  ,n_l) + - + % io~ 
Ot 2 n -  1 OXiM ) OX k 

(A 8) 

The total energy e = e t + 2e t is conserved, but there is an exchange of energy 
between the modes unless 

c~ et - c3 e ~ = 0 ( a  9) 
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holds. This condition holds in equilibrium, where the phase density f ~  is 

/ I  ( h c ' k ~ - l l  
given by the Bose formula f ~ =  y exp ~ k B T ]  . 

Due to N-processes there is an exchange of momentum between the modes 
unless 

4 p [  5 t 
- -  Ct P i = 0.  (A 10) 

Remark. Here we treat e I and e t as well as p[ and p[ as independent variables. 
This demands initial and boundary conditions for energy and momentum in 
each mode. This presents a problem because we can control the total heat flux 
Qi = cZip[ + 2cZtp[ only. Whereas in equilibrium energy and momentum are 
distributed among the modes according to (A 9) and (A 10) additional theories 
must be used to determine the distribution of energy and momentum supplied 
at the heater. We refer to a paper by Weis [44] where this point is discussed 
as a question of coupling between heater and crystal. More over the anisotropy 
of real crystals leads to a focussing of longitudinal and transversal phonons 
in different propagation directions [45]. 

We will discuss the system (A 8) in two extreme limits only. In the limit 
of ballistic phonons, r~ ~ co, r} --* co, (A 8) reduces to two uncoupled systems 
of differential equations which read in the one-dimensional case 

Ou~ OuR - - + ~ B - - = 0 ,  (A11) 
Ot Ox 

B 

with ~,~B = 

0 1 

o~ 0 1 0 

c~ 0 1 

o~ 0 1 

~  , " . .  " .  , 

~ 1 7 6  �9 ~  ~  

oz 
OLM_ 2 0 1 

c~-1 0_ 

0 

i 2 
2 

o~ff = Cc~ 4i2_ 1 �9 

(A ll) 

As discussed in Section 5.2 this system is capable of describing phonons with 
speed %. 

We conclude that the system (A 8) describes ballistic phonons with speeds 
ct and ct, respectively. 

In the limit of second sound z~ ~ co, r} ~ 0 (A 8) may be reduced con- 
siderably. All quantities UA which occur combined with rN in the form UA/T~r 
must vanish in order to guarantee finite values of the quotient. It follows 

= 0  for n = 2 , 3  M, g { i l . . , i  n ) . . .  

C 3 e 1 - -  c 3 e t = 0 

5 l 
Cl P i - -  c 5  P [ : 0 ( A  12) 
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The only non-vanishing quantities are total energy e and total momentum 
Pi =P[  + 2p[ for which we obtain the balance laws 

Oe ~5 Opi 
- - +  - 0  
Ot G Oxi 

Opi 1 0 e  - - +  
Ot 3 0 x  i 

This system 

VH = 3 ~3 

This velocity 
and Beck & 

- 0 with 
3 1 2 

- + - - .  ( A  13) 
C, cf c7 

describes waves of  undamped second sound with the speed 

(A 14) 

of  second sound was also reported by Sussmann & Thellung [34] 
Beck [361. 

A p p e n d i x  B 

Solution of  the N-fieM system with "ballistic initial values" 

B.1 Ballistic initial values 

The true initial-boundary value problem for the heat pulse experiment is im- 
possible to solve because we cannot control the initial and boundary data of  
all moments�9 Therefore we shall now construct and solve an initial value prob- 
lem which we believe represents an approximative model for the heat pulse ex- 
periment. 

In the one-dimensional case the N-field system may be written as (3.58) 

OUA OU B 1 
- - +  ~ ~A, -- UA, 
Ot B OX "c A 

- 0  1 

O~ 1 0 1 

c~ 2 0 

~AB = (X3 

0 

1 

0 l 
�9 . , , 

UA = [e/c 2, Pl,  N~11> . . . .  I, 

1111 
rA rR r 

0 

�9 , o 

~ . o " .  o ~ ~ 

(2M_ 2 0 1 

O~M_ 1 0 

A = 0  . . . .  M, 

i 2 
c 2 A = 0 ,  1 . . . .  M 

c~i = 4i 2 - 1 

UM+ 1 = 0 

(B 1) 
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We ask for the values of the fields UA(X, t = 0), where t = 0 is the time when 
the heat pulse of duration A t  is just finished, uA(x,  t = 0) will be taken as 
initial values. 

During the time A t  phonons are produced at the heater and travel into the 
crystal. We assume that these phonons do not interact with other phonons dur- 
ing the heating period. In other words: The new phonons travel ballistically 
into the crystal for t ~ ( - A t ,  0) .  

In this case phonon momentum and energy must satisfy 

V 
P l  ~" ~ ~ = VUl (g 2) 

C" 

where g is the deviation of the energy from its equilibrium value and V is 
the velocity of ballistic phonons. * 

For ballistic propagation we may cancel the production terms --UA/ZA in 
(B 1)1 and by introducing this and (B 2) in the field equations (B 1)1 it 
follows, that 

UA = XA Ul ; X 0 = I ,  X 1 =  V A = O . . . M (B3)  

must hold. 
For the field equations we obtain 

1 Oul 
Obt~l "Jr E XAA ~AB XB - -  
Ot B Ox 

= 0 t E ( - A t ,  0 ) ,  A ,  B = O, 1 . . . .  M.  (B 4) 

These are M + 1 equations for the energy density ul which must be identi- 
cally satisfied. Hence follows 

1 ~AB XB = A2 = V or ~ ( ~AB -- V(~AB) XB = O. 

B B 

(B 5) 

This means that X B is the right eigenvector of  C corresponding to the eigen- 
value V. Recall that V is the biggest eigenvalue of C. 

Thus during the heat pulse all fields u A obey the differential equation 

aUA aUA - - + V  = 0 .  (B7)  
Ot c3x 

We assume the temperature - or equivalently the energy density - at the 
heater  (x = 0) given as shown in Fig. B. 1. 

Fig. B. 2. shows the energy density as function of space at time t = 0, 
which follows from (B 7) with the boundary condition Fig. B. 1. 

* Naturally V = c should hold (Pph = hk ,  eph = hck) but this is only true if the 
number N of variables reaches infinity (see Fig. 5.5) 
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e{x:O,t} I e[x.t--Ol 

1"6~I"- et ~I~6"t t 
= ~ t / l e o e  6: ~ c / t  ooo  

Ii 
x /U  

Fig. B.1./B.2. Boundary condition for bt 1 = e and energy density at time t = 0 

The fields uA(x, t = 0) follow from (B 3) as 

UA(X, t = O) = XAHI(X, t = O) = XAuO(x) (B 8) 

These functions will be taken as initial values for the initial value problem. 

B.2 Solution of initial value problem 

Instead of solving the true initial-boundary-value problem for the heat pulse 
experiment for the finite crystal we consider an infinite crystal with the initial 
conditions (B 8). We expect solutions of (B 1) in the form of plane waves 

UA = CA exp i ( f2t -- qx ) . 

From (B 9) and (B 1) we obtain 

[ f25AB--(  ~aBq+i-rA OAB)] CB = 0. 

(B 9) 

(B lO) 

i 
(B 10) is the eigenvalue problem of the matrix ~ABq = -  gAB with the eigen- 

rA 
value O(C)(q) and the right eigenvectors C(S)(q) (c = O, 1 . . . .  M). 

(B 9) is a solution of (B 1) for every eigenvalue O (c) and the correspond- 
ing eigenvector C(8 c) and for every value of q. 

Superposition yields the general solution of (B 1) 
co  M 

ua = ~ S C(AC)(q) e x p i ( f 2 t - q x )  dq. (B 11) 
c = 0  

Adapting the ballistic initial conditions we obtain the solution 
co 

UB(x, t) = ~ ~ R(B~)(q)Lff)(q) XoW(q ) exp i(Dt - qx) dq (B 12) 

with 

R(, c) 

L(c) 

[2(c) 

- - co  
C, D 

- right eigenvectors 

- left eigenvectors 

-- eigenvalues I of ~ABq + i gAB 
rA 
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with ~ " (c)17(o) = fleD) LA 

A 
Xo - right eigenvector corresponding to the biggest eigenvalue of ~AB 

1 I uO(x) exp iqx dx - Fourier-transform of the initial condition W(q) = ~ -:~ 

A further analytical reduction of (B.12)l is not possible, the evaluation must 
be done numerically. 
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