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Abstract

The semiclassical Boltzmann equation for electrons in semiconductors is considered together with the parabolic
band approximation and interaction terms for elastic scattering with acoustic phonons and inelastic scattering with
optical phonons. Taking only scalar and vectorial moments into account, two sets of equations are derived from the
Boltzmann equation: spherical harmonics equations and equations for full moments.

The equations are solved for two simple processes in an in®nite semiconductor in a homogeneous electric ®eld.
The results show that both moment systems agree, if the number of full moments exceeds the usual choice of
hydrodynamical models. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Electron transport; Boltzmann equation; Spherical harmonics; Moments

1. Introduction

Moment equations derived from the electron

Boltzmann equation are an important tool in semicon-

ductor physics, owing to the fact that the computing

times for their numerical solution are much smaller

than for the Boltzmann equation.

The best known example for the moment method is

the hydrodynamic model [1±3], see also Refs. [4,5].

The moment equations contain transport coe�cients

and relaxation times which are typically ®tted to

Monte Carlo simulations of some simple processes [6].

This paper deals with two moment systems which

have been presented and analyzed recently by Liotta

and Majorana [7] and Struchtrup [8] and we compare

their results for simple homogeneous processes.

The energy-kinetic equations of Ref. [7] correspond

to a spherical harmonics expansion with two moments
[9±14] Ð a scalar and a vector integral of the electron

phase density with respect to the electrons directions

which are functions of space±time and the electron

energy. Usually these equations are solved only for

stationary cases, below, however, we shall present

results for the transient case in bulk silicon.

The energy-kinetic equations are confronted with a

set of equations for an arbitrary number of full

moments, where only scalar and vectorial functions are

considered. The full moments are integrals of the

phase density with respect to the electron momentum,

i.e. functions of space±time only.

In the system of full moments all relaxation times

and transport coe�cients are computed directly from

the collision term of the Boltzmann equation. Thus, in

opposition to usual hydrodynamic models [1,2,6], there

are no free parameters for the ®tting to Monte Carlo

data. Moreover, the full collision operator is con-

sidered and not a relaxation time approach [1,6]. As
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will be seen, all moment equations are coupled through

explicit matrices of mean collision frequencies. Due to
this coupling the results for all moments depend on the
number of moments chosen; in particular the results

for electron density, energy and drift velocity will
change with the number of moments.

Therefore, the most important question in the use of
the moment systems is, how many moments are needed
to describe the physics of a problem accurately, in the

sense that the moment equations give a result close to
a solution of the Boltzmann equation. In the present
paper we accept the choice of only two spherical har-

monics moments without asking whether this is a good
approximation for the Boltzmann equation. In fact, we

consider the results of the spherical harmonics as a
benchmark for the full moments and ask how many
full moments Ð scalar and vectorial Ð are needed to

reproduce the results of the spherical harmonics
equations.
The equations for the full moments rely on a closure

with a Grad type phase density [15,16], i.e. a
Maxwellian times a polynomial. While we have chosen

a Maxwellian which is based on the electron tempera-
ture [8], one may also consider a Maxwellian with the
lattice temperature [18,19]. In accordance with the ®nd-

ings in Ref. [18], we show that the latter choice is nu-
merically less expensive, but gives good results for
small ®elds only.

As test problems we consider an in®nite semiconduc-
tor in a homogeneous electric ®eld, both in the transi-

ent and the stationary case where we compare the
results for the drift velocity. The spherical harmonics
can be computed from the Grad phase density and we

compare the results for the stationary case. Both
moment systems give the same results, if the number

of full moments exceeds the usual choice of hydrodyn-
amic models. The velocity curves for the full moments
are presented in [8], all other curves are shown for the

®rst time.
Our examination is based on a simpli®ed physical

picture of the semiconductor, i.e. the parabolic band

approximation with interaction terms for collisions of
electrons with acoustical and optical phonons [20,21].

This simpli®ed description, although inaccurate for
high electric ®elds, describes all interesting features of
electron transport in semiconductors, e.g. velocity sat-

uration and overshoot.
In the present paper we want to test whether a full

moment method is capable of giving results in accord-
ance to those of the spherical harmonics method.
Thus, the emphasis of the paper lies on the in¯uence

of the moment number on the results and not on the
physics. We think that it is appropriate to start with
the simpli®ed picture in this ®rst study of multimoment

methods for electrons.
Spherical harmonics codes with full band structure

are available in the literature, e.g. Refs. [10,22]. The in-
corporation of a full band structure into the moment

method, however, is only at its beginnings. A moment
system with 13 moments on the basis of the Kane dis-
persion relation [21] was just presented [23] and the

study of an arbitrary moment number with the Kane
law is planned for the future.

2. Boltzmann equation for parabolic bands

The basic quantity in the kinetic theory of electron
transport is the phase density f, de®ned such that
f dx dc gives the number of electrons in the space el-

ement dx with velocities in the element dc at time t.
The phase density is governed by the Boltzmann
equation which reads [8,17]

@ f

@ t
� ck

@ f

@x k

ÿ e

m
Ek

@ f

@ck

� Qac �Qop �1�

where e is the elementary charge, Ek denotes the elec-
tric ®eld and m denotes the e�ective mass which di�ers
from the electron mass me; for silicon we have m �
0:32me � 2:915� 10ÿ31kg: Here and in the following

summation is understood for two equal Cartesian indi-
ces in a term.
The collision terms Qac, Qop describe the collisions

with acoustical and optical phonons, respectively. We
have [8,20]

Qac � ÿAc

�
fÿ 1

4p

�
f dO

�
,

Qop � ÿB

( �������������
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��������������������
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where the abbreviations stand for

A � 1

p
m2kBE2

l

hÿ 4RU2
l
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��������������������
�c2 ÿ w�j�

q
�
8<:

��������������������
�c2 ÿ w�j�

q
c2rw

0 c2 < w
:

El � 9 eV is a deformation potential, R � 2330 kg=m3 is
the crystal density and Ul � 9040 m=s is the longitudi-
nal sound speed. Moreover, DtK � 11:4� 1010 eV=m is
another deformation potential, hÿ o � 0:063 eV is the

energy of optical phonons and y � hÿ o=kB is an equiv-
alent temperature. All values are for silicon [21]. T0

denotes the temperature of the lattice which is assumed

to be constant in the context of this paper. For the
examples we chose T0 � 300 K: Finally kB and hÿ are
Boltzmann's and Planck's constants, respectively, and

dO denotes the element of solid angle.
In equilibrium Ð where the production terms vanish

Ð the phase density is a Maxwellian,

fjE � n

�����������������
m

2pkBT0

r 3

eÿ�m=2kbT0�c2 : �2�

n � � f dc denotes the number density of electrons.

3. Spherical harmonics

Spherical harmonics moments are moments of the

phase density with respect to the direction vector
ni � ci=c � fsinW sinj, sinW cosj, cosWg, de®ned as

uhi1,i2,...,ini �
�
nhi1,ni2 ,...,nin if dO, �3�

where the brackets denote a symmetric trace-free ten-
sor, see Appendix A for details. With the moments in

Eq. (3) we can write the phase density as an in®nite
series

f �
X1
n�0

�2n� 1�!!
4pn!

uhi1,i2,...,ininhi1,ni2 ,...,nin i: �4�

In practice, one considers not an in®nite series, but
only the ®rst terms of Eq. (4) and in the present paper
we shall consider only the ®rst two terms and set all

higher terms equal to zero. This choice is appropriate
when the elastic scattering dominates, so that the
phase density is almost isotropic [8,9,14].

The spherical harmonics are functions of space xi,
time t and the absolute electron speed c. The spherical
harmonics moments of the Maxwellian Eq. (2) are

ujE � 4���
p
p n

��������������
m

2kBT0

r
eÿ�m=2kBT0�c2 , uhi1,i2,...,inijE � 0: �5�

The equations for the spherical harmonics follow by
multiplication of the Boltzmann equation with
nhi1,ni2 ,...,nin i and subsequent integration over all direc-

tions. For the ®rst two moments we ®nd the equations
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These are the spherical harmonics equations for the
model of Section 2, see Ref. [7] and Ð for the station-
ary case Ð Refs. [9±13].

4. Full moments

Next, we consider full moments of the phase density,
and also here we restrict ourselves to scalar and vector-

ial moments. Thus, the full moments under consider-
ation are [8]

Rr � m

�
c2rf dc � m

�
c2r�2u dc,

Rri � m

�
c2rcif dc � m

�
c2r�3ui dc,

�7�

r � 0, 1, . . . , R, with an arbitrary number R. Our inter-

est in the remainder of the paper lies in the question,
which number R one has to chose in order to retain
the physical contents of the energy-kinetic Eq. (6).

Among the set (7), we have the number density n,
the electron temperature T, the driftvelocity vi and the
energy ¯ux qi by

n � R0

m
,

3

2
R0

kB

m
T � 1

2
R1, R0vi � R0i , qi � 1

2
R1i :

Note, that the second equation de®nes the electron
temperature. The usual choice of variables for hydro-
dynamic models consists in these eight moments plus
the deviator of the pressure tensor Rhiji �m

�
chicjif dc�

m
�
c4chijif dc [1,6,24]. The latter is not considered here

due to the neglect of the higher spherical harmonics
struch. Thus, for R � 1, our equations below corre-

spond to hydrodynamic models. We emphasize again
that we shall consider the full collision term so that
there are no ®tting parameters in our model.

The equations for the full moments follow by multi-
plication of the Boltzmann equation with mc 2r and
mc 2rci, respectively and subsequent integration. These
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equations do not form a closed set for the variables in
Eq. (7), but contain additional quantities. In order to

express these through the variables, we need a closure
assumption, i.e. an expression for the phase density as
a function of the variables. Here, we choose a Grad

type function [15,16]

f � fjT

"
1ÿ

XR
s�0

l2c2s ÿ
XR
s�0

lsi c
2sci

#

with fjT � n

���������������
m

2pkBT

r 3

exp

�
ÿ m

2kBT
c2
�
;

�8�

see Ref. [8] for a discussion. The main feature of the
closure (8) is the choice of the local Maxwellian with

the electron temperature T. The quality of the moment
method depends considerably on the phase density
which is chosen for the closure; e.g. one may use a clo-

sure with the global equilibrium phase density fjE �
fjT0

which is formed with the lattice temperature T0;
see Refs. [18,19] and Section 6.

Moreover, one may consider other functions for the
closure, e.g. the maximum entropy method [24]. In
each case one has to check for the proper number of
moments Ð our results are restricted to the closure

with the phase density (8).
Note that the closure problem for the full moments

is more involved than for the spherical harmonics

where the closure consists simply in setting all higher
spherical harmonics equal to zero.
The expansion coe�cients l, li in Eq. (8) follow

from Eq. (7) by inversion as functions of the moments,
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���
p
p
2

XR
s�2

Cÿ1ts

Rs ÿ RsjT
R0�2kBT=m�s�t

,

lti � ÿ
3
���
p
p
2

XR
s�0

Ĉ
ÿ1
ts

Rsi
R0�2kBT=m�s�t�1

�9�

with

RrjT � R0
�
2kBT

m

�r
2���
p
p G

�
r� 3

2

�
,

Crs � G

�
r� s� 3

2

�
, Ĉrs � G

�
r� s� 5

2

�
:

�10�

u|T
r are the moments of f|T with u0jT � u0 and

u1jT � u1; G(r ) denotes the gamma function.
It is an easy task to compute the spherical harmo-

nics moments of the phase density (8) as

u �
�
f dO � 4pfjT

 
1ÿ
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s�0

lsc2s
!
,

ui �
�
nif dO � ÿ4p

3
fjT
XR
s�0

lsi c
2s�1:

�11�

With the phase density (8) we obtain from the
Boltzmann equation a closed set of equations for the
moments (7),
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for r � 0, 1, . . . , R: The production vector P r and the
matrices of mean collision frequencies Yrs and Ŷrs are

given by
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p
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Ĉ
ÿ1
ts �AG�r� t� 3�

�B�Jr�t�1,0 � egJ0,r�t�1��

�13�

with the integrals

Jr,s � 2

�1
0

x 2�2r ��������������
x 2 � a

p 1�2s
eÿx

2

dx �14�

and the temperature ratios

a � y
T
, g � y

�
1

T0
ÿ 1

T

�
:

The integrals Jr,s may be expressed through the
modi®ed Bessel functions of the second kind; see Ref.
[8] for details.

The moment uR + 1 in the system (12) is related to
the variables (7) by a constitutive equation which fol-
lows from (8) as
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RR�1 � RR�1jT �
XR
s�0

XR
t�2

Cÿ1st G

�
R� s� 5

2

�
Rt ÿ RtjT

�2kBT=m�tÿRÿ1
:

In equilibrium, the right hand sides of Eq. (12) must

vanish, and we have g � 0 or T � T0; moreover, the
moments assume their equilibrium values Rr � RrjT0

�
RrjE and RrijE � 0:

5. Homogeneous processes

We compare the results of the two set of equations
for two simple one-dimensional homogeneous pro-

cesses. Figure 1 shows the drift velocity of the elec-
trons Ð i.e. Ri

0/R0 Ð for a stationary electric ®eld E as
a function of its strength. The dotted line are the

results obtained from the spherical harmonics Eq. (6)
while the curves are obtained with the full moment

equations with moment numbers R � 1, 6: All curves
show the well-known saturation e�ect for high ®elds

[20,21]. However, it needs a moment number of R � 6
to obtain the curve of the spherical harmonics; with a
number R � 1 of full moments the results di�er in par-

ticular at high ®elds.
Also in the transient case, where the crystal is sud-

denly subjected to a constant homogeneous ®eld, it

needs a number of about R � 6 of full moments to
obtain the same result as with the spherical harmonics
equations, see Fig. 2.

The two ®gures, for di�erent values of the electric
®eld, show the overshoot of velocity, which is also
reported from Monte Carlo solution of the Boltzmann
equation [20,21]. These do not exhibit the minimum

after the peak but give a monotony decreasing velocity
after the peak. However, there is a lot of noise in the
Monte Carlo results, and therefore it is not clear

whether the minimum is an artefact of our choice of
only two spherical harmonics or whether it has a
physical meaning. Calculations with more spherical

harmonics which will allow to answer this interesting
question are in preparation.
We compare the spherical harmonics (11) computed

with the full moments with the numerical solution of
Eq. (6). Following Ref. [7], we consider the functions
of the electron energy e � �m=2�c2

N�e� � 1

n

�������
2e
m3

r
u�e� and Vi�e� � 2e

nm2
ui�e�

which are de®ned such that

1 �
�
N�e� de and vi �

�
Vi�e� de

hold. Figure 3 shows these functions for the stationary

homogeneous case with E � 10 kV=cm and E �
50 kV=cm in suitable units. In both cases, we have a

Fig. 1. Stationary homogeneous process: drift velocity as a

function of the electric ®eld calculated with spherical harmo-

nics (dots) and full moments with R � 1,6 (lines).

Fig. 2. Transient homogeneous process: drift velocity as a function of time with E � 10kV=cm, 50 kV/cm calculated with spherical

harmonics (dots) and full moments with R � 1,6 (lines).
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better agreement between the numerical solution of
Eq. (6) and the moment theory with R � 6: However,
while the agreement in the function N(e) is good,

there is a clear di�erence in the function V, which is
most marked close to its maximum.

6. Global equilibrium closure

In this last section, we consider the closure of the
moment equations with the global Maxwellian [18,19],

i.e. with the phase density

f � fjE

"
1ÿ

XR
s�0

lsc2s ÿ
XR
s�0

lsi c
2sci

#
�15�

instead of Eq. (8).

In this case, the moment equations read
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@ t
� @Rrk
@xk
� 2r

e

m
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XR
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Yrs�T0��Rs ÿ RsjE�

@Rri
@ t
� 1

3

@Rr�1

@x i
� 2r� 3

3

e

m
EiRr � ÿ

XR
s�0

Ŷrs�T0�Rsi
�16�

with the same matrices of mean collision frequencies as
above in Eq. (13), but evaluated at the lattice tempera-

ture T0. Thus, the set of moment equations is linear in
the moments and may be solved at lower compu-
tational cost as the set (12), which is strongly nonlinear

in the electron temperature T � 1
3R

1=�R0�kB=m��:
Indeed, in the linear case, one has to compute the
matrices Yrs (T0) and Ŷrs�T0� only once, while the non-

linear case requires the evaluation of the matrices for
all values of the temperature.
Figure 4 shows the velocity-®eld characteristics com-

puted with the linear equations for moment numbers
R � 1, 6 and 11 in comparison to the results of the

spherical harmonics. For ®elds ER12:5 kV=cm the
results from the linearized equations match very well.
Above this value, however, we were not able to ®nd

convergence (note that the numerical inversion of the
matrices Crs, Crs requires high precision calculations in
order to be accurate).

This results are in accordance with Ref. [18] where it
was shown that the closure (15) gives bad results at
large electric ®elds.

We conclude that the linear equations should be
used in the case of low ®elds, since they give good
results at low computational cost. High ®elds, how-
ever, require the use of the nonlinear closure, i.e. Eq.

(12), or of the spherical harmonics Eq. (6).
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Appendix A. Trace-free tensors and spherical harmonics

A symmetric tensor Si1,i2,...,in is trace-free, or irreduci-
ble, if

Si1,i2,...,ij,...,ik ,...,indij,ik � 0

holds for every pair ij, ik. The irreducible part of a
symmetric tensor Ai1,i2,...,in follows from Ref. [26]

Ahi1,i2,...,ini �
Xkn=2k
k�0

ankd�i1,i2,...di2kÿ1i2kAi2k�1,...,in�j1,...,jk ,j1,...,jk

where

ank � �ÿ1�k n!�2nÿ 2kÿ 1�!!
�nÿ 2k�!�2nÿ 1�!!�2k�!!

kn
2
k �

8>><>>:
n

2
n even

nÿ 1

2
n uneven

, n!! �
Yk�nÿ1�=2k
j�0
�nÿ 2j �:

For the daily work, it is useful to write instead [25]

Ahi1,...,ini �
Xkn=2k
k�0

bn,k�di1i2 , . . . ,di2kÿ1 i2kA
�k�
i2k�1,...,in

� . . . �Pn,k terms��

Fig. 4. Homogeneous stationary process: drift velocity as a

function of the electric ®eld calculated with spherical harmo-

nics (dots) and full moments with global equilibrium closure

for R= 1, 6 or 11 (lines).
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where A�k�i2k�1,...,in is the kth trace of Ai1,...,in and the sum
in brackets extends over all Pnk di�erent permutations

of the indices. We have

bn,k � �ÿ1�kYkÿ1
j�0
�2�nÿ j � ÿ 1�

, Pn,k � n!

�nÿ 2k�!2kk!
:

The ®rst few tensors Ahi1,...,ini read

Ahii � Ai, Ahiji � Aij ÿ 1

3
Akkdij,

Ahijki � Aijk ÿ 1

5
�Ailldjk � Ajlldik � Aklldij �:

The tensor Ai1,...,in may also be written as a sum of
its trace-free parts [25],

Ai1,...,in �
Xkn=2k
k�0

b̂n,k�di1i2 , . . . ,di2kÿ1i2kA
�k�
hi2k�1,...,ini

� . . . �Pn,k terms��,

where A�k�hi2k�1,...,ini is the trace-free part of the kth trace
of Ai1,...,in and

b̂n,k � 1Ykÿ1
j�0
�2�nÿ kÿ j � � 1�

:

Spherical harmonics may be represented through the
trace-free tensors

nhi1 , . . . ,nini

with a unit vector ni � fsinWsinj, sinWcosj, cosWgi:
Spherical harmonics form an orthogonal set with�
nhi1 , . . . ,nininhj1 , . . . ,njmi dO �8>>>><>>>>:

0 n 6� m

4pYn
j�0
�2j� 1�

dhi1,...,inihj1,...,jni n � m :

Here, dO � sinW dW dj is the element of solid angle
and dk1,...,kl is an l-dimensional unit tensor with l even,
de®ned by

dk1,...,kl � dk1k2 , . . . ,dklÿ1kl � . . .�
�

l!

�l=2�!2l=2 terms

�
:

In particular, the following two identities hold and
are used several times in this paper:

Ai1i2,...,in

�
nhi1 , . . . ,nininhj1 , . . . ,njmi dO �8>>>><>>>>:

0 n 6� m

4pn!Yn
j�0
�2j� 1�

Ahj1,...,jni n � m

nhi1 , . . . ,ninink � nhi1 , . . . ,ninnki

� n

2n� 1
nhhi1 , . . . ,ninÿ1idinik:

�17�
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