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How much work is lost in an irreversible turbine?

H. Struchtrupa,∗, M.A. Rosenb

a Department of Mechanical Engineering, University of Victoria, PO Box 3055 Victoria, BC V8W 3P6, Canada
b Department of Mechanical, Aerospace and Industrial Engineering, Ryerson Polytechnic University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada

Received 5 July 2001; accepted 1 March 2002

Abstract

The question of how much work is lost in an adiabatic turbine due to its irreversibilities finds different answers when discussed on basis
of the isentropic efficiency, or with the exergy method. In this contribution, we seek to clarify why the two viewpoints lead to quite distinct
results for the lost work. In particular, we discuss how the “reversible work” of the exergy method could be realized and how to recover the
“recoverable work of friction”. The difference between both approaches is explained. 2002 Éditions scientifiques et médicales Elsevier
SAS. All rights reserved.

1. Introduction

Many researchers and practicing engineers agree that ex-
ergy analysis is a powerful tool for assessing the thermo-
dynamic efficiencies and losses of systems and processes
[1–6]. Consequently, exergy methods are used in some in-
dustries. However, many industries use exergy analysis only
sparingly or not at all.

One of the present authors, in considering reasons for
this lack of broader acceptance, recently wrote [7], “those
who choose not to utilize exergy often do so for several
reasons. Some find. . . the results difficult to interpret and
understand.” In addition, users often consider many facets of
exergy analysis to be confusing. If exergy methods are to be
more widely accepted and adopted by industry, these issues
must be addressed. Confusion and lack of understanding can
be addressed, in large part, through better education and
clearer presentation.

Although many researchers are trying to alleviate such
problems, confusion nevertheless still exists about some
aspects of exergy analysis. This statement is sometimes true
even for relatively simple processes and devices. One such
device is an adiabatic turbine, which is the focus of this
article.

In conventional thermodynamics, the second law is used
to assess the merit of a turbine and leads to the common
isentropic efficiency, among other measures. With exergy
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methods, more than one type of efficiency can be defined
and used. A common definition of turbine exergy efficiency,
which has often been used by others, is considered here.

Significant confusion can arise on the part of users be-
cause these turbine efficiencies are different, and sometimes
the magnitudes of the differences are significant. For exam-
ple, Kotas [5] notes for an expansion process that the isen-
tropic efficiency differs from the rational efficiency, which
is based on exergy, and he describes the differences. Also,
Moran and Shapiro [6] obtain different values for isentropic
and exergy efficiencies in examples. But explanations re-
garding which of these efficiencies are more useful or mean-
ingful, and how they should be interpreted, are lacking. The
confusion that can consequently arise can leave engineers
unsure of what actions are needed to improve efficiency.
Worse still, this situation can be misleading, and can cause
inappropriate actions regarding efficiency improvement to
be taken.

Other researchers have also recognized some of the
difficulties related to second law-based and other definitions
of efficiencies for turbines, and several articles on the topic
have recently been published (e.g., [8–10]).

In this article, we consider isentropic and exergy effi-
ciencies for an adiabatic turbine and explain the differences
between them. Furthermore, we discuss the implications of
each, in terms of actions that may be implied from them to
improve efficiency. Our objectives are to help eliminate the
confusion that can arise when isentropic and exergy efficien-
cies are considered for a turbine, and to clarify the meanings
and advantages of each. It is hoped that the results will help
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Nomenclature

cp specific heat at constant pressure . . J·kg−1·K−1

C flow velocity . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

h specific enthalpy . . . . . . . . . . . . . . . . . . . . . J·kg−1

k isentropic exponent
ṁ mass flow . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·s−1

p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . bar
p0 reference environment pressure= 1.01325 bar
Q̇0 heat flow rate at temperatureT0 . . . . . . . . . . . . W
Q̇k heat flow rate at temperatureTk . . . . . . . . . . . . W
R gas constant . . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

s specific entropy . . . . . . . . . . . . . . . . . J·kg−1·K−1

Ṡgen entropy production rate . . . . . . . . . . . . . . W·K−1

T ,Tk temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 reference temperature= 298.15 K

T2s end temperature of isentropic expansion . . . . K
wT specific turbine work . . . . . . . . . . . . . . . . . J·kg−1

wT,s specific work of isentropic turbine . . . . . J·kg−1

wT,rev specific work (exergy analysis) . . . . . . . . J·kg−1

Ẇ work rate (power) . . . . . . . . . . . . . . . . . . . . . . . . W
Ẇlost lost power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
Ẇ

exergy
lost lost power according to exergy analysis . . . . W

Ẇrev reversible power . . . . . . . . . . . . . . . . . . . . . . . . . W

Greek symbols

ηT isentropic turbine efficiency
ηII second-law efficiency
σ specific entropy production . . . . . . . J·kg−1·K−1

ψ specific flow exergy . . . . . . . . . . . . . . . . . . J·kg−1

engineers utilize the different turbine efficiencies more ef-
fectively, and facilitate greater use of exergy methods in ap-
propriate and beneficial ways.

2. Exergy and reversible work

Let us introduce exergy following Bejan [1]. Since we are
interested only in turbines, we restrict ourselves to stationary
processes in open systems of constant volume with one inlet
and one exit. Then, first and second law of thermodynamics
can be written as

ṁ

(
h2 − h1 + 1

2

(
C2

2 −C2
1

)) =
∑
k=0

Q̇k − Ẇ

ṁ(s2 − s1)−
∑
k=0

Q̇k

Tk
= Ṡgen� 0

(1)

We ask for changes in the process, in order to maximize the
power (i.e., work per unit time)Ẇ . Note, that if Ẇ > 0,
maximizing is tantamount of increasing the power output,
while in the opposite case,̇W < 0, we decrease the power
input needed for the process.

Variations in Ẇ can only be achieved, if at least one
other quantity is allowed to change in the energy balance
Eq. (1). The method of exergy assumes that the system under
consideration interacts with a reference environment, which
has temperatureT0. For the derivation of the exergy balance
one assumes that the heat transfer with the environmentQ̇0
exits and is allowed to change, while all other parameters of
the process remain unchanged.

Eliminating Q̇0 between the two laws yields for the
power

Ẇ =
∑
k=1

(
1− T0

Tk

)
Q̇k + ṁ(ψ1 −ψ2)− T0Ṡgen (2)

where we have introduced the specific flow exergy by

ψ = h− h0 + 1

2
C2 − T0(s − s0). (3)

The reference values are chosen in order to make the
values of the exergies at atmospheric conditions(T0,p0)

equal to zero.
Since the entropy production rateṠgen is strictly positive,

the power becomes maximal for vanishing entropy produc-
tion, i.e., for reversible processes. We define the reversible
work for the process by assumingṠgen= 0 as

Ẇrev =
∑
k=1

(
1− T0

Tk

)
Q̇k + ṁ(ψ1 −ψ2) (4)

The irreversibility is defined as

Ẇ
exergy
lost = Ẇrev − Ẇ = T0Ṡgen (5)

This is the power we loose in the actual process, if we
compare it to a reversible process between the same end
states and exchanging heat with the environment atT0. If
Ẇ > 0, irreversible effects diminish the power output, and if
Ẇ < 0 irreversible effects increase the power needed to run
the process.

It follows that in order to operate a process more
efficiently one should diminish entropy production, if the
amount of lost work is considered too large. That is, the
engineering task is to compare the lost powerT0Ṡgen to the
actual powerẆ and decide whether a diminishing of the
losses is worthwhile. If so, one has to identify the sources of
entropy production and minimize these. Exergy and second
law efficiency have the goal to quantify the losses, and the
second law (1)2 must be used to identify the locations of
the largest losses. It is noted that the computation of the
losses by the exergy method depends on the environmental
temperatureT0.

Similar arguments are used in today’s undergraduate
textbooks, e.g., Refs. [3,4,6] for the exergetic evaluation
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of all types of processes and devices. We note that the
elimination ofQ̇0 in deriving Eq. (2) becomes senseless in
the context of an adiabatic device. That is, whenQ̇0 = 0,
Eq. (1)2 can be multiplied by any temperature and then
combined with Eq. (1)1, and consequently the irreversibility
can become non-unique.

3. Isentropic efficiency and work loss

Let us consider the expansion of a perfect gas (ideal with
constant specific heats) in an adiabatic turbine. The entrance
conditions areT1, p1 and the gas will expand to local
atmospheric pressurep2. Note that the local atmospheric
pressurep2 in general will be different from the pressure
of the reference environmentp0 = 1.01325 bar. Ignoring
kinetic and potential energies, the first and second laws
simply reduce to

wT = Ẇ

ṁ
= h1 − h2 = cp(T1 − T2)

σ = Ṡgen

ṁ
= s2 − s1 = cp ln

T2

T1
−R ln

p2

p1

(6)

We seek the maximum work we can gain from the expan-
sion, but, since we consider an adiabatic turbine, we do not
allow for any heat exchange. Here,T1, p1, p2 are fixed while
the temperatureT2 is not specified a priori. That is, the tem-
peratureT2 is a natural parameter of the problem. Eliminat-
ing T2 yields

wT = cpT1
(
1− eσ/cp(p2/p1)

(k−1)/k), (7)

wherek = cp/cv.
Since both,σ and cp, are positive, the work output of

the turbine becomes maximal forσ = 0, i.e., the maximum
output from an adiabatic turbine (at fixedT1, p1, p2) is given
by the isentropic work, which can be expressed as

wT,s = cpT1
(
1− (p2/p1)

(k−1)/k) (8)

Then, the temperature of the expanded gas would be given
by

T2s = T1(p2/p1)
(k−1)/k (9)

The actual turbine is irreversible, and is usually character-
ized by the isentropic efficiency of the turbine, defined as
the ratio of the actual work to the isentropic work, viz.

ηT = wT

wT,s
= h1 − h2

h1 − h2s
= T1 − T2

T1 − T2s
� 1 (10)

It is clear that a good turbine should have an isentropic
efficiency close to unity, and when seeking higher efficiency
one should try to construct the turbine accordingly. The
irreversible processes in the turbine account for the entropy
production σ . The engineering task for improving the
turbine efficiency is to diminish the entropy production, i.e.,
to identify those locations in the turbine which produce most
entropy and redesign them.

Fig. 1. Adiabatic expansion of ideal gas inT –s diagram.

Note that the isentropic efficiencyηT compares the actual
process (characterized byT2) to a hypothetical one with
different exit temperatureT2s , but with the same type of
process, viz. adiabatic expansion in a turbine.

The work loss due to the irreversibilities in the turbine,
based on an isentropic approach, is given by

wT,lost = wT,s −wT = h2 − h2s

=
2∫

2s
p=const

dh=
2∫

2s
p=const

T ds (11)

The last step of Eq. (11) follows since the Points 2 and 2s

are at the same pressure, that is the integration is performed
at constant pressure. Fig. 1 shows theT –s diagram for
the adiabatic expansion of an ideal gas. Here, Point 1
denotes the initial state(T1,p1), Point 2s denotes the state
after the (hypothetical) adiabatic reversible expansion, and
Point 2 denotes the actual state after adiabatic irreversible
expansion. Thus, the lost work is the hatched area in Fig. 1,
with the corner pointsa, b, 2, 2s.

For later use, we note that for given turbine efficiency the
temperature after the expansion can be written as

T2 = T1
[
1− ηT

(
1− (p2/p1)

(k−1)/k)] (12)

Also, the expressions for the turbine work and the lost
work, respectively, can be written as

wT = ηTwT,s = ηTcpT1
(
1− (p2/p1)

(k−1)/k)
wT,lost = (1− ηT)wT,s

= (1− ηT)cpT1
(
1− (p2/p1)

(k−1)/k) (13)

Therefore, for given isentropic efficiency and pressure ratio,
the work loss according to Eq. (13) grows with the turbine
inlet temperatureT1.

4. Second law efficiency and work loss

Now we want to evaluate the turbine performance by
means of the exergy method. For a stationary turbine with
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inlet conditions(T1,p1) and outlet conditions(T2,p2), the
exergy method gives the maximum work output as

wT,rev = ψ1 −ψ2 = h1 − h2 − T0(s1 − s2)

= wT + T0σ (14)

whereT0 denotes the temperature of the reference environ-
ment. We note that the reversible workwT,rev corresponds to
a process which exchanges heat with the environment atT0,
as becomes clear from the derivation of Eq. (4) above.

It follows immediately that the lost work according to the
exergy method, relative to any ideal or reversible process
between points 1 and 2, is given by

w
exergy
T,lost =wT,rev −wT = T0σ (15)

Therefore, the lost work according to the exergy method
is the cross-hatched area in theT –s diagram of Fig. 1, i.e.,
the rectangle (a, b, c, d).

One commonly used measure of performance in the
exergetic interpretation is the second law efficiency, defined
as

ηII = wT

wT,rev
= h1 − h2

h1 − h2 + T0σ
= 1

1+ T0σ/(h1 − h2)
� 1

(16)

Many other exergy-based and second law-based efficiencies
have been developed and applied. Here, however, we focus
on the exergy efficiency defined in Eq. (16) as an important
illustration. A more comprehensive treatment would require
a more exhaustive examination of other exergy efficiencies.

As for the isentropic efficiencyηT, the second law
efficiency is less than or equal to 1, and can be 1 at best,
i.e., when the actual process is reversible, so thatσ = 0.

In order to compare the two efficiencies,ηT andηII , we
use the constitutive equations of a perfect gas in Eq. (16) and
eliminateT2 by Eq. (12), to obtain

ηII = ηT

(
1−

(
p2

p1

)(k−1)/k)[
ηT

(
1−

(
p2

p1

)(k−1)/k)

+ T0

T1
ln

[(
p1

p2

)(k−1)/k

(1− ηT)+ ηT

]]−1

(17)

This equation gives the second law efficiencyηII as a
function of the inlet temperatureT1, the turbine pressure
ratiop2/p1, and the isentropic efficiencyηT. Table 1 shows
some values ofηII as function ofηT for a variety of inlet
temperaturesT1, a pressure ratiop1/p2 = 10, k = 1.4, and
T0 = 298.15 K

For turbines with exit temperaturesT2 aboveT0, the nu-
merical value ofηII is always larger than the corresponding
value ofηT, more so for larger inlet temperaturesT1. Indeed,
inspection of Eq. (17) shows thatηII will go to unity asT1
goes to infinity, since the factorT0/T1 in the denominator
will decrease to zero.

For turbines with exit temperatures belowT0 we observe
the opposite: the second-law efficiency is smaller than the

Table 1
Comparison of isentropic efficiencyηT and second law efficiencyηII for an
adiabatic turbine with different values of inlet temperatureT1 and a pressure
ratiop1/p2 = 10. Here,T0 = 298.15 K andk = 1.4

ηT ηII ηII ηII ηII
T1 = 1700 K T1 = 1100 K T1 = 575.6 K T1 = 298.15 K

1 1 1 1 1
0.9 0.965 0.947 0.904 0.830
0.8 0.928 0.892 0.813 0.693
0.7 0.887 0.835 0.726 0.578
0.6 0.839 0.771 0.638 0.478
0.5 0.782 0.700 0.549 0.387
0.4 0.712 0.616 0.456 0.303

isentropic efficiency. Indeed, inspection of Eq. (17) shows
thatηII will go to zero asT1 goes to zero.

The influence of the temperature between the two ap-
proaches, exergetic and isentropic, becomes also appar-
ent when we study the work losses, i.e., the areasAs =
[a, b,2,2s] andAex = [a, b, c, d] in Fig. 1: When we ex-
press the entropy productionσ = s2 − s1 as a function of
the isentropic efficiency and the pressure ratio by means of
Eqs. (12) and (6) we obtain

w
exergy
T,lost = cpT0 ln

[
(p1/p2)

(k−1)/k(1− ηT)+ ηT
]

(18)

Therefore, for given isentropic efficiency and pressure ratio,
the work loss according to the exergy method is independent
of the turbine temperature. From the figure, it becomes ev-
ident that the exergetic work loss will be smaller than the
isentropic work loss that we computed for the adiabatic tur-
bine, expressed in Eq. (13)2, as long as the exit temperature
of the turbine is aboveT0.

5. Lost work and recoverable work

In the last section we saw that the two measures for
turbine performance, isentropic efficiency and second-law
efficiency, can differ considerably. Accordingly, an engineer
who is asked to evaluate the performance of a turbine might
be rather confused. In this section, we therefore try to explain
the differences between the two approaches.

We learned that the second law efficiencyηII of an
adiabatic turbine normally is larger than the isentropic
efficiencyηT. In particular, we saw that for a given isentropic
efficiency ηT the second law efficiencyηII increases with
increasing inlet temperature of the turbine. Also, the lost
work according to the exergy method is independent of the
turbine inlet temperature, see Eq. (18). This observation
leads Kotas to the conclusion “that a turbine stage with a low
isentropic efficiency is more tolerable at a high temperature
than at a low temperature” [5].

On the other hand, the isentropic lost work, as computed
for the adiabatic turbine in Eq. (13), increases with increas-
ing turbine inlet temperature. This might lead to just the op-
posite interpretation, that is a turbine stage with low isen-
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tropic efficiency might be less tolerable at higher tempera-
tures.

5.1. How to realize the maximum work

In order to understand the differences between the two
approaches to turbine efficiency, we ask how the reversible
work can be realized. This question is normally not ad-
dressed in standard undergraduate textbooks, e.g., [3,4,6].

We begin with the discussion of the reversible work
related to the isentropic efficiencywT,s , Eq. (8). Here, the
above question is easily answered:wT,s is the work of an
adiabatic reversible, or isentropic, turbine. In order to realize
wT,s in a turbine, one has to minimize the irreversibilities in
the interior of the turbine, i.e., the entropy productionσ .

For the reversible work of the exergy methodwT,rev,
Eq. (14), the answer is that any reversible process between
the Points 1 and 2 will give the reversible workwT,rev,
as long as all heat transfers to the environment take place
reversibly, i.e., through a (infinite) series of Carnot engines.
Indeed, the first law for a flow process between 1 and 2 reads

wflow
12 = h1 − h2 + q12 (19)

wherewflow
12 is the work andq12 is the heat exchange for

the process. Since we are considering a reversible process,
we haveq12 = ∫

T ds. In particular,T ds is the heat transfer
at temperatureT and this can drive an infinitesimal Carnot
engine with efficiencyηC = 1 − T0/T rejecting heat to the
environment. It follows, that the work

wC
12 = −

2∫
1

(
1− T0

T

)
T ds

= −
2∫

1

(T − T0)ds = T0σ − q12 (20)

can be gained through the Carnot engines. The total work is
given by

wflow
12 +wC

12 = h1 − h2 + T0σ =wT,rev (21)

The simplest process of this kind, and the only one which
does not employ external Carnot engines, follows the curve
[1-d-c-2] in theT –s-diagram of Fig. 1:

1-d isentropic expansion from(T1,p1) to (T0,pd)

d-c isothermal heat supply from(T0,pd) to (T0,pc)

c-2 isentropic compression from(T0,pc) to (T2,p2)

Of course, the process details depend on the choice of
T0. If T0 � T2, the last step will be an expansion instead
of a compression. For the usual conditions in a gas turbine
system we haveT0 � T2 and the process is as described
above.

It is no surprise that the process involves heat transfer at
T0, since the derivation of the expression for the reversible

work allowed explicitly for an exchange of heat with the
environment atT0.

The point which we wish to emphasize here is that a
reversible process between Points 1 and 2 cannot be realized
by an adiabatic turbine alone. By using the exergy method
for assessment of our actual process, we compare two
different processes, which differ not only in the fact that one
is reversible(1-d-c-2) and one is not (1-2), but also in the
details of the processes—the hypothetical process is much
more involved, in the simplest case adding heat exchanger
(c-d) and compressor(c-2) to the plain expansion (1-2, and
1-a, respectively).

5.2. The recoverable heat of friction

There is another interpretation of the second law effi-
ciency and the corresponding work losses as the recoverable
heat of friction. In his book [5], Kotas writes: “Because of
frictional reheat, the enthalpy and the exergy of the working
fluid in the final stage of the actual process are greater than
they would have been under isentropic conditions. When the
final state of an expansion process corresponds to the initial
state of another process, e.g., in multistage turbines, this dif-
ference in enthalpy or exergy can be utilised. Consequently,
we must not regard the whole of the frictional reheat as a
loss.”

In the following, we shall try to interpret this statement
for a single turbine. Multi-stage turbines will be discussed
elsewhere [11].

The final state of an isentropic turbine is the Point 2s

(see Fig. 1). This state has some exergy, i.e., work potential,
ψ2s so that the exhaust has some value and could be used to
produce work. The exhaust of the actual turbine has exergy
ψ2>ψ2s , i.e., it has a greater work potential. This difference
in exergies gives us the maximum work for a process[2-2s]
as

wrev
2,2s = ψ2 −ψ2s = h2 − h2s − T0(s2 − s2s )

=
2s∫

2

T ds − T0(s2 − s2s )= Area[2s, d, c,2] (22)

See Fig. 1 for a visualization of the workwrev
2,2s in terms of

an area in theT –s-diagram. If we accept the irreversibility
of the turbine between 1 and 2, we can nevertheless get some
work out by a process to Point 2s. The maximum work for
the latter iswrev

2,2s . In other words, we can add some devices
(the simplest being reversible isobaric cooling through
Carnot cycles) to the irreversible turbine, and achieve the
work

wmax
1-2-2s =wT +wrev

2,2s = h1 − h2s − T0σ =wT,s − T0σ (23)

This is the maximum work for the process[1-2-2s],
which includes the irreversible subprocess[1-2].

For the interpretation of the above results, we recall that
the work loss of the irreversible turbine in comparison to the



H. Struchtrup, M.A. Rosen / Exergy, an International Journal 2 (2002) 152–158 157

isentropic turbine is given by Eq. (11). Therefore, we can
rewrite Eq. (22) as

wrev
2,2s =wT,lost − T0σ (24)

and it follows that we can recover the partwrev
2,2s of the work

lost in the turbine, while the remainderT0σ is lost indeed,
and not recoverable. Accordingly, the work loss must be
compared to the reversible turbine which also has endpoint
2s, and is given by

wlost
1-2-2s =wT,s −wmax

1-2-2s = T0σ (25)

Note, that these considerations lead to the definition of yet
another efficiency

ηnew= wmax
1-2-2s
wT,rev

= 1− T0σ

h1 − h2s
� 1 (26)

which measures the work output of the irreversible turbine
plus recovery device against the isentropic turbine.

5.3. Lost work, again

We have now obtained three different expressions for the
lost work:

• The lost work for the irreversible turbine[1-2] compared
with the corresponding isentropic turbine[1-2s] as
expressed by Eqs. (11), (13)

wT,lost = h2 − h2s = cpT2s
⌊
eσ/cp − 1

⌋
For comparison with other results from the exergy
method, one can write

wT,lost = T ∗σ whereT ∗ = cp

σ
T2s

[
eσ/cp − 1

]

For comparatively small values of the entropy produc-
tion, the exponential can be expanded to first order so
thatT ∗ = T2s .

• The lost work for the irreversible turbine [1-2], com-
pared to the maximum work of a reversible process [1-2]
as expressed by Eq. (18)

w
exergy
T,lost = T0σ

• The lost work for the turbine plus recovery device, i.e.,
the process[1-2-2s], compared to the isentropic turbine
[1-2s] as expressed by Eq. (25),

wlost
1-2-2s = T0σ

Surprisingly, the lost work expressions for the last two
cases are equal(=T0σ). Therefore we emphasize that the
two lost work expressions, although equal in size, refer to
different processes, viz. a reversible process [1-2], and a
partly irreversible process[1-2-2s], respectively.

6. Conclusions

In this article, we show that the isentropic efficiency for
a turbine and a particular turbine exergy efficiency in gen-
eral can differ, sometimes significantly. Correspondingly, the
work lost in a turbine, which is essentially the difference
between the actual and the ideal turbine work outputs, also
differs when isentropic efficiency and exergy efficiency ap-
proaches are taken. The results are not necessarily surpris-
ing, in that these efficiencies measure different quantities and
therefore address different questions. However, this situation
can confuse potential users, especially if they do not care-
fully assess the nature of the different efficiency definitions
before applying them. We believe that the explanations and
discussions presented here can eliminate or reduce the possi-
ble confusion that this situation can create for users, and also
leave engineers better aware of what steps are needed, based
on thermodynamic assessments, to improve efficiency, and
of what the true ideal efficiency that they face is.

In particular, it becomes clear that there are two possibil-
ities to reduce the lost work of a turbine:

(a) reduce the irreversibilities inside the turbine, and
(b) add recovery devices to the turbine.

From our analysis we conclude that the isentropic effi-
ciency is the proper measure when one considers the turbine
alone. The consideration of the isentropic efficiency teaches
us to diminish the interior irreversibilities of the turbine as
much as possible. However, the isentropic analysis does not
take into account that parts of the losses can be recovered by
adding additional devices.

While the second law efficiency increases with the work
potential of the turbine exhaust, it does not rely on account-
ing for a recovery device for exhaust exergy, but on replac-
ing the irreversible turbine by a more complicated reversible
process. The reversible process (1-2) is as difficult to achieve
as the reversible turbine(1-2s), and therefore it remains un-
clear what engineering action follows from its use.

The newly introduced efficiency (26) considers the irre-
versible turbine and an additional exhaust recovery device.
While we do not propose that this efficiency is the better
choice, we introduce it to emphasize that the best improve-
ment of a turbine relies on a combination of diminishing the
internal irreversibilities and recovering the heat of friction
from the exhaust.

All three efficiencies are equal to unity in the case of
a reversible turbine, and the corresponding work loss is
zero. A possible conclusion from this observation is that the
diminishing of the internal irreversibilities leads to a greater
improvement than the recovery of heat of friction.

Although this article applies to a simple process, it can
likely be extended in some ways to other situations. In gen-
eral, we believe this article serves to illustrate the need to use
caution when defining and applying efficiencies, for turbines
and likely also for other devices. It is not sufficient simply to
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understand and appreciate the benefits of efficiencies based
on the second law compared to those based on the first law,
although this is very important. At the same time, one has to
understand what suggestions to improve the process at hand
can be deduced from the analysis. Only a complete under-
standing of both will allow engineers to utilize the different
turbine efficiencies more effectively, and facilitate appropri-
ate and beneficial uses of exergy methods.

A statement, sometimes found in books about exergy, is
that work losses at high temperatures are less important than
those at low temperatures. Accordingly, irreversibilities in
the high-pressure regions of a turbine could be construed to
be less important than those in the low-pressure regions [2,
5]. Yet an analysis based on isentropic efficiencies shows
that irreversibilities at any pressure contribute to the overall
performance of the turbine with the same weight. This
statement will be proven in a forthcoming paper [11].
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