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Abstract

A spherical balloon has a non-monotonic pressure-radius charac-
teristic. This fact leads to interesting stability properties when two
balloons of different radii are interconnected, see [1], [2], [3]. Here,
however, we investigate what happens when a single balloon is inflated
by mouth (say). We simulate that process and show how the maxi-
mum of the pressure-radius characteristic is overcome by the pressure
in the lungs and how the downward sloping part of the characteristic
is ”bridged” while the lung pressure relaxes.

Keywords: Rubber balloons, Mooney-Rivlin material,
Non-convexity, Stability.
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1 Characteristic of a spherical balloon

The ([pB] , r)-characteristic, which dictates the dependence of the pressure
jump [pB] across the membrane of a spherical rubber balloon on its radius r,
is non-monotonic, see [1] and Fig.1. If the stress-strain relation of rubber is
of the Mooney-Rivlin type, the analytic form of the ([pB] , r)-relation reads

[pB] (r) = 2s1
d0

r0

(
r0

r
−

(r0
r

)7
)(

1−
s1

s
−1

(
r

r0

)2
)
. (1.1)

d0 and r0 are the thickness and the radius of the balloon, respectively, before
inflation, and s1 and s

−1 are the two constants of a Mooney-Rivlin material.
For a typical rubber balloon we have

s1 = 3 bar, s
−1 = −0.3 bar, and

d0

r0
= 0.5 · 10−2. (1.2)

For brevity we introduce K = −
s1

s
−1

= 10.
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Fig. 1 (pressure, radius)-characteristic.
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The free energy FB of the balloon results from integration

FB =

r∫
r0

[pB] 4πr
2dr (1.3)
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where VB0 =
4π

3
r3
0
is the volume contained in the balloon before inflation.

The question arises of how the part with negative slope is traversed as we
inflate the balloon. In order to obtain an answer we consider a model which,
in our understanding, simulates the inflation of a balloon by mouth.

2 Modelling inflation

Fig. 2 shows a schematic view of our ”inflation apparatus”. It consists of the
balloon, a cylinder with piston of cross section F , a linearly elastic spring,
and two valves A and B. The volume of the cylinder represents the volume
of the lungs and the force in the spring stands for the muscle forces that push
the air into the balloon.

Inflation usually occurs in several steps i = 1, 2, ..., of which each one has
four phases, viz.

i1: ”Inhaling”. We begin the ith step with a balloon of radius ri−1.
Valve B is closed and valve A is open; the spring is unloaded
and the initial volume of the cylinder is VZA. That volume is
increased by lifting the piston so that the volume becomes
VZmax. Then valve A is closed.

i2: ”Pressurizing”. The piston is released so that the air in the cylin-
der is compressed by the spring to the volume VZ0. The value of
the pressure is then called P .

i3: ”Inflating”. Upon opening valve B the compressed air will enter
the balloon, which increases to the radius ri with the correspon-
ding pressure pi.
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i4: ”Changing pressure”. Valve B is closed and valve A is opened
so that the pressure pZi in the cylinder drops to the external pres-
sure p0. The process is then repeated.

Fig. 2 Model for lung and balloon.

3 Equilibria

It is our objective to calculate the radii ri for a prescribed pressure P , or a
prescribed spring constant λ. These are the radii for which− at the end of the
phase i3 − the system of spring, cylinder and balloon are in equilibrium. The
condition for the equilibrium is the existence of a minimum of the available
free energy. In the present case that energy has the form, see [3]
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A = NZkT ln pZ
p0

+NBkT ln pB
pB
p0

+ (NZ +NB) a (T, p0)+ free energy
of the air in
Z and B
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free energy
of the
balloon

+ p0(VZ + VB)
work of
external
pressure p0

+ λ
2F2 (VZ − VZA)

2 .
energy of
the spring.

(3.1)
a is the specific free energy of the air in the reference state (T, p0); it is a
constant.

The pressures pB and pZ are related to NB and VB, or NZ and VZ , re-
spectively, by the ideal gas relation pV = NkT . Therefore the available free
energy is a function of NB, (NZ), VB = 4π

3
r3 and VZ. The total number

N = NB +NZ of molecules is constant during the phases i3 of inflation, but
it depends on i. Indeed, we have

NikT = PVZ0 + pB(i−1)
4π

3
r3i−1, (3.2)

so that the number Ni equals the sum of the − always equal − cylinder filling
and of the balloon filling reached in the (i− 1)st step.

A necessary condition for equilibria requires that the derivatives of A with
respect to NB, r, and VZ vanish. From this condition we obtain easily

pB = pZ pressure in balloon = pressure in cylinder

pZ − p0 =
λ
F2 (VZ − VZA) pressure jump at piston = spring pressure

pB − p0 = [pB] (r) pressure jump at balloon = membrane pressure.

(3.3)
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These are three equations for the equilibrium values of NB, r, and VZ in each
step of inflation. Each one of these values depends on the step number i,
because we have pZVZ = (Ni −NB)kT .

The solution of (3.3) must be found numerically. There are several solu-
tions which are not all stable. In a stable equilibrium the matrix of second
derivatives of the available free energy A in (3.1) with respect to NB, r, and
VZ must be positive definite. That is a sufficient condition for a minimum
of A. The exploitation of the condition, however, is extremely cumbersome
and therefore we proceed differently.

4 The pressure equilibrium between cylinder

and balloon

We assume that the equilibria (3.3)2,3 of piston and membrane are established
so quickly that the slower trend to establish the equilibrium (3.3)1 between
cylinder and balloon always sees (3.3)2,3 satisfied. If that is so, we may use
(3.3)2,3 to determine pZ(r) and pB(r). We obtain

pZ(r)− p0 =
λ
F 2 (VZ(r)− VZA) and

pB(r)− p0 = 2s1
d0
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−
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)
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The equation (4.1)3 for VZ(r) follows from (4.1)1 with

pZ(r) =
1

VZ
(Ni −NB) kT =

1

VZ

(
NikT − pB(r)

4π

3
r3
)

as the solution of a quadratic equation. By (4.1)1,3 the function pZ(r) − p0
determines an ensemble of curves parametrized by Ni or, equivalently, ri−1.
Note that, by (3.2), there is a one-to-one correspondence between ri−1 and
Ni, since pB(r)

4π
3
r3 is monotonic.

Fig. 3 shows that ensemble of curves, each one in the interval

ri−1 < r < ri. All individual curves
(i)
pZ (r)−p0 begin at the height P −p0. In

the first step we have i = 1 and ri−1 equals r0, the radius of the uninflated
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balloon. The first step ends at r1 where
(1)
pZ (r1) intersects the curve pB(r).

Vertically above that point at the height P − p0 the curve
(2)
pZ(r) starts and

it runs through to r2 where it intersects the curve pB(r), etc. Thus we see
the zig-zag curves of Fig. 3 and 4 appear. The vertical branches represent
the inhaling and pressurizing step with the closed valve B, while the arcs
represent the inflating step. Equilibria exist in the lower tips where the arcs
touch the balloon characteristic pB(r) − p0. In Fig. 3 we observe how much
effort it may take to overcome the pressure maximum of that characteristic,
when P is only slightly higher than the barrier. But the labor is rewarded,
once the barrier is overcome because afterwards the balloon inflates in a
single step with decreasing pressure to obtain a much bigger radius than the
one with which it began.
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Fig. 3 Zig-zag line: Cylinder pressure during inhaling, pressurizing
and inflating for a pressure that is minimally larger than the
pressure barrier.
Smooth line: Pressure-radius characteristic of the balloon.

Fig. 4 shows the same process with the difference that P is now large, so
that a strong lung is at work. The pressure barrier of the balloon is overcome
in the first step.
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Fig. 4 Zig-zag curve shows the pressure in the cylinder, when the
maximal pressure P is much bigger than the pressure barrier.
Equilibria exist in the lower tips.

The data for which the Figs. 3 through 6 are drawn were chosen as follows.

s1
d0

r0
= 1, 5 · 103 N

m2 K = 10 p0 = 1 bar T = 290 K

VB0 = 10−6m3, VZA = 4 · 10−3m3, VZ0 = 4, 5 · 10−3m3

λ

F2 =




2, 236 · 106 N

m

1

m4 Fig. 3,5,6
for

2, 5 · 106 N

m

1

m4 Fig. 4
=⇒

P = 1, 02236 bar

P = 1, 025 bar

5 Available free energy as a function of r

We continue to consider the partial equilibria in which only the equilibrium
condition (3.3)1 is not yet satisfied, while the conditions (3.3)2,3 are already
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satisfied. In that case we may write the available free energy A in (3.1) as a
function of r. We obtain

A−Nia(T, p0) = pZVZ ln pZ
p0

+ pB
4π
3
r3 ln pB

p0
+
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(
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2
,

(5.1)
where pZ(r) and pB(r) as well as VZ(r) are given by (4.1).

A(r) is drawn in the lower part of Fig.5 for the second step of the inflation
process and for the small pressure P to which Fig.3 refers. A(r) has three

extrema corresponding to the three points of intersection of the curves
(2)
pZ (r)

and pB(r), see upper part of Fig. 5.
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Fig. 5 A(r) with two minima
and three points of inter-
section of the p-curves.

Fig. 6 A(r) with one minimum
and one point of inter-
section of the p-curves.
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[In Fig. 3 we have not seen these three intersections, since we have cut

off the curve
(2)
pZ (r) at the first point of intersection.] The central extremum

is a maximum and therefore corresponds to an unstable state. The other
two extrema are minima and therefore they represent stable states. Starting
from ri−1 the balloon will find the nearest minimum with ri > ri−1, since it
cannot overcome the energetic barrier. In the seventh step the left minimum,
− and the maximum − have been eliminated. The p-curves have only one
point of intersection, see Fig. 6 and the balloon expands strongly.

6 Discussion

Rubber as such and, in particular the material of rubber balloons is not
strictly a Mooney-Rivlin material. There are semiempirical formulae that
fit the experimental (p, r)-curves better, e.g. see [4], [5], [6]. A peculiarity
of these improved constitutive relations is that the balloons may lose the
spherical symmetry at a certain radius. This interesting aspect of balloon
physics does not show up here, since we treat rubber as a Mooney-Rivlin
material. We do mention in this context the expert review on hyperelasticity
of rubbers − among other topics − by M.F. Beatty [7]. An interesting work
on non-spherical balloons may also be found in [8].

References

[1] Atkins, J.E., Rivlin, R.S. (1951). Large Elastic Deformations of Isotropic
Materials IX. The Deformation of Thin Shells. Davy Faraday Lab. of the
Royal Institution.

[2] Dreyer, W. Müller, I., Strehlow, P., A Study of Equilibria of Intercon-
nected Balloons, Quarterly J. Mech. Appl. Mech. 35 (1982).

[3] Müller, I. (1985). Thermodynamics. Pitman Adv. Publ. Program Boston,
London, Melbourne.

[4] Alexander, H., Tensile Instability of Initially Spherical Balloons. Int. J.
Engng. Sci. 9 (1971).

10



[5] Needleman, A., Necking of Spherical Membranes. J. Mech. Phys. Solids
24 (1977).

[6] Haughton, D.M., Ogden, R.W., On the Incremental Equations in Non-
Linear Elasticity II. Bifurcation of Pressurized Balloons. J. Mech. Phys.
Solids 26 (1978).

[7] Beatty, M.F., Topics in Finite Elasticity: Hyperelasticity of Rubber, Elas-
tomers and Biological Tissues - with Examples, Appl. Mech. Rev. 40
(1987).

[8] Stephan, V., Die Berechnung der Form luftgefüllter Ballons und deren
Stabilität. Diploma thesis, TU Berlin (1989).

11


