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An approach is presented to derive transport equations for rarefied gases from the Boltzmann
equation within higher orders of the Knudsen number. The method focuses on the order of
magnitude of the moments of the phase density, and the order of accuracy of the transport equations,
both measured in powers of the Knudsen number. The method is developed up to the third order, and
it is shown that it yields the Euler equations at zeroth order, the Navier–Stokes–Fourier equations at
first order, Grad’s 13 moment equations(with omission of a nonlinear term) at second order, and a
regularization of these at third order. The method is discussed in detail, and compared with the
classical methods of kinetic theory, i.e., Chapman–Enskog expansion and Grad moment method.
The advantages of this method above the classical approaches are discussed conclusively. An
important feature of the method presented is that the equations of any order are stable, other than in
the Chapman–Enskog method, where the second and third approximation—Burnett and
super-Burnett equations—are unstable. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1782751]

I. INTRODUCTION

In this paper we present a method to develop equations
for the flow of rarefied gases by studying the order of mag-
nitude of terms in the equation in powers of the Knudsen
number« (the ratio between the mean free path and a mean-
ingful macroscopic length). This approach is based on the
complete set of moment equations of the Boltzmann
equations—an infinite set of equations—which is reduced to
sets of only few equations, when the desired agreement with
the Boltzmann equation is of the orderOs«ld.

A. Background

The usual expansion procedure for the Boltzmann equa-
tion is the Chapman–Enskog method,1,2 which gives the Eu-
ler equations in zeroth order and the Navier–Stokes–Fourier
(NSF) equations in first order. The second and third order
equations according to the Chapman–Enskog method are the
Burnett3 and super-Burnett equations.4 While the Euler and
NSF equations are accepted and widely used, the higher or-
der Chapman–Enskog expansions suffer from instabilities5

and unphysical behavior in steady state processes,6 and can-
not be considered to be useful tools for the description of
rarefied gas flows.7 Recent attempts to stabilize the Burnett
equations either by adding some super-Burnett terms(aug-
mented Burnett equations),8,9 or by entropy based
regularization,10,11 lack a rational derivation from the Boltz-
mann equation,7 and some results of the augmented Burnett
equations are unphysical.6

The other well-known method for obtaining equations
for rarefied gas flows is Grad’s method of moments12–14

which provides stable equations at any level, that is, for any

set of moments considered as the basic variables of the
theory. There are two major points of criticism against
Grad’s method, namely, that Grad’s equations fail to describe
smooth shock structures for Mach numbers above a critical
value,15 and that the equations are not relateda priori to the
Knudsen number as a smallness parameter. The last point
makes it difficult to develop criteria for the choice of mo-
ments that must be considered. While there is general agree-
ment that larger Knudsen numbers require more moments,14

there is no argument available in the present literature that
links the Knudsen number to the choice of moments re-
quired.

The methods of Chapman–Enskog and Grad are com-
pletely independent of each other, since they are derived
from different premises. However, in a series of papers Rei-
necke and Kremer were able to show that NSF and Burnett
equations can be derived from certain sets of Grad’s moment
equations.16,17 For this, they used the method of Maxwellian
iteration which is essentially equivalent to a Chapman–
Enskog expansion of the moment equations.18 One may con-
clude that the Grad equations are richer than the Burnett
equations, and that the latter fail stability tests due to the
omission of terms that are present in the stable Grad equa-
tions. Nevertheless, this observation does not provide a link
between Grad equations and Knudsen number arguments.

Only recently Struchtrup and Torrilhon introduced a
regularization for Grad’s 13 moment equations which is
based on a Chapman–Enskog expansion around a nonequi-
librium state,7,19,20 termed as the R13 equations. Struchtrup
and Torrilhon showed that the R13 equations are linearly
stable for all wavelengths and/or frequencies, show phase
speeds and damping coefficients that match experiments bet-
ter than those for the Navier–Stokes–Fourier equations or the
original Grad 13 moments system, exhibit Knudsen bound-a)Electronic mail: struchtr@me.uvic.ca
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ary layers, and lead to smooth shock structures for all Mach
numbers. Moreover they showed that a Chapman–Enskog
expansion of their equations yields the Burnett and super-
Burnett equations for Maxwell molecules.19 While the prop-
erties of the R13 equations are highly desirable, their deriva-
tion by a method which stands between the methods of Grad
and Chapman–Enskog did not convince all readers.

B. Summary of main results

In this paper we use a different way of accounting for the
order of magnitude of moments, and terms in moment equa-
tions, in order to derive transport equations up to third order
in the Knudsen number. This procedure yields the Euler and
NSF equations in zeroth and first order, a set of equations
very similar to Grad’s 13 moment equations in second order,
and a variation of Struchtrup and Torrilhon’s R13 equations
in third order. Higher order approximations(fourth order and
higher) will be discussed only briefly, but it seems that the
fourth order approximation is equivalent to a 26 moment
system of Grad type, and the fifth order to its regularization.

Since the method is based on accounting orders in the
Knudsen numbers, it provides a direct link between Grad
type equations, and the Knudsen number. Moreover, it repro-
duces the zeroth and first order results—Euler and NSF—of
the Chapman–Enskog method, but not the unstable higher
order Chapman–Enskog results, that is, the Burnett and
super-Burnett equations.

In other words, this method provides a common um-
brella for sets of equations that up to now were thought to
stem from very different arguments. Moreover, all sets of
equations derived are stable for disturbances of all wave-
lengths and frequencies.

How close the second and third order equations agree
with Grad’s original equations, or the R13 equations, de-
pends on the interaction model chosen. In this paper we shall
focus on Maxwell interaction potentials and the Bhatnagar–
Gross–Krook(BGK) model, where the second order equa-
tions are exactly Grad’s 13 moment equations,12,13 with the
omission of a nonlinear term, and the third order equations
are the original R13 equations, again under omission of sev-
eral higher order nonlinear terms. The changes that can be
expected when other interaction models are considered are
only sketched, detailed accounts shall be published later.
Thus, the equations derived in this paper are not entirely
new, but the method to derive them is.

The first attempt to derive Grad equations by means of
arguments on the Knudsen number is due to Mülleret al.,
termed as “consistent order extended thermodynamics”
(COET).21 These authors considered the infinite system of
coupled moment equations of the BGK equation.22 Our
method shares some similarity with the COET method, but is
distinctly different in detail. These differences will be dis-
cussed below, and in Sec. V, which will also give a more
detailed discussion of our method in relation to the methods
of Chapman–Enskog, Grad, and Struchtrup and Torrilhon.

C. Short outline of the method

As the COET method, our method is based on consider-
ing not the Boltzmann equation, but the infinite system of
moment equations, and one can say that the problem of ex-
panding the Boltzmann equation is moved from the phase
space to moment space.

The method of finding the proper equations withorder of
accuracyl0 in the Knudsen number consists of the following
three steps.

(1) Determination of theorder of magnitudel of the
moments.

(2) Construction of a moment set with minimum number
of moments at orderl.

(3) Deletion of all terms in all equations that would lead
only to contributions of ordersl.l0 in the conservation
laws for energy and momentum.

Step(1) is based on a Chapman–Enskog-like expansion
where a momentf is expanded according to

f = f0 + «f1 + «2f2 + «3f3 + ¯,

and the leading order off is determined by inserting this
ansatz into the complete set of moment equations. A moment
is said to be of leading orderl if fb=0 for all b,l. It must
be emphasized that we are interested only in the leading
order of the moments, and that we shall not be interested in
determining the coefficientsfb in the expansion. Indeed, the
latter is the approach of the Chapman–Enskog method,
which aims at computing the coefficientsfb in terms of
gradients of mass density, velocity, and temperature. This
first step agrees with the ideas of COET,21 where, however,
the authors use a Maxwell-type iteration23 instead of a
Chapman–Enskog expansion.

In step(2), new variables are introduced by linear com-
bination of the moments originally chosen. The new vari-
ables are constructed such that the number of moments at a
given orderl is minimal. This step does not only simplify
the later discussion, but gives an unambiguous set of mo-
ments at orderl. This ensures that the final result will be
independent of the initial choice of moments.

Step(3) follows from the definition of the order of ac-
curacyl0 that we chose to adopt: A set of equations is said to
be accurate of orderl0, when the pressure deviatorsi j and
the heat fluxqi are known within the orderOs«l0d.

The evaluation of this condition is based on the fact that
all moment equations are strongly coupled. This implies that
each term in any of the moment equations has some influ-
ence on all other equations, in particular, on the conservation
laws. The influence of each term can be weighted by some
power in the Knudsen number, and is related, but not equal
to the order of magnitude of the moments appearing in the
term. A theory of orderl0 will consider only those terms in
all equations whose leading order of influence in the conser-
vation laws isløl0. Luckily, in order to evaluate this con-
dition, we can start with the conservation laws, and step by
step, order by order, add the relevant terms that are required:
We start with theOs«0d equations(Euler), then add the rel-
evant terms to obtain theOs«1d equations(NSF), and so on.
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The accounting for the order of accuracy is the main
difference between our method, and the COET, which as-
sumes thatall terms in all moment equations that are of
leading orderløl0 or smaller must be retained. This is
quite different, e.g., in order to compute the heat flux with
third order accuracy, as is necessary in a third order theory,
our method requires other moments only with second order
accuracy, while others can be ignored completely. COET, on
the other hand, would require higher order accuracy for these
moments, and a larger number of moments. Our approach
leads to smaller systems of equations for a given order, and
can be performed for the full three-dimensional and time
dependent equations(Ref. 21 presents the equations only for
one-dimensional steady state processes).

At first glance, the reader might feel overwhelmed by the
amount of equations in this paper, and their length. This,
unfortunately, is unavoidable due to the complexity of the
problem. The reader is invited to focus first on the structure
of the proceedings, as outlined above, rather than on the
details of the equations, and I hope that the presentation be-
low puts enough emphasis on the structure to allow that. It
should not be forgotten that a nonlinear three-dimensional
third order theory is derived, which competes with the super-
Burnett equations—the derivation of the latter is by far more
complicated, and was never performed for the full nonlinear,
three-dimensional case.4

The remainder of the paper is organized as follows: In
Sec. II we define the moments as basic irreducible tensors,
and derive the infinite set of moment equations. The mo-
ments of the collision term of the Boltzmann equation are
presented for Maxwell molecules and the BGK model. In
Sec. III the order of magnitude of the moments is deter-
mined, as described above. The results are then used in Sec.
IV to develop the proper sets of equations for zeroth to third
order accuracy. Section V contains a detailed discussion of
the results, in particular, a comparison to other ideas avail-
able in the literature. The paper ends with conclusions.

II. BASIC EQUATIONS

A. Boltzmann equation

Our starting point is the Boltzmann equation1,2 which we
write as

Df

Dt
+ Ck

]f

]xk
=

1

«
Ssfd, s1d

where f denotes the phase density,Ck=ck−vk denotes the
peculiar velocity withck as the velocity of a particle andvk

as the center of mass velocity of the flow.D /Dt=s] /]td
+vk] /]xk denotes the material time derivative.

« is a formal smallness parameter which stands for the
Knudsen number. This parameter will be used for monitoring
the order of magnitude of the moments, and the order of
magnitude of terms within equations. At the end of all cal-
culations,« will be set equal to unity.

In fact, if proper dimensionless quantities were intro-
duced, the dimensionless Boltzmann equation would read as
Eq. (1) with the Knudsen number instead of«, and the Knud-
sen number could be used as smallness parameter for the

procedure below. Reinserting of the dimensions would then
remove the Knudsen number—this corresponds to setting«
=1 at the end of the computations. Thus the use of« removes
the necessity of introducing dimensionless quantities.

Ssfd is the collision term that accounts for the change of
f due to collisions, and has the following properties.1,2

(1) Conservation of mass, momentum, and energy, so that

mE h1,ci,C
2jSsfddc = 0. s2d

(2) In equilibrium, the phase density is the Maxwellian,

Ssfd = 0 ⇒ f = fM =
r

m
Î 1

2pu
3 expF−

C2

2u
G , s3d

wherer is the mass density,u=sk/mdT is the tempera-
ture in energy units, whereT is the temperature,m is the
particle mass, andk denotes Boltzmann’s constant.

(3) The Boltzmann equation leads to a positive entropy
production.

This last point will not be discussed further within this paper.

B. Moments

We define the general irreducible moments of the phase
density as

ui1¯in
a = mE C2aCki1lCi2

¯ Ckinlfdc, s4d

where indices in angular brackets denote the symmetric and
trace free part of a tensor, e.g.,

Akil = Ai ,

Aki j l = 1
2Aij + 1

2Aji − 1
3Akkdi j ,

Aki jkl = Asi jkd − 1
5fAsirr dd jk + As jrr ddik + Askrrddi jg.

Here,Asi jkd denotes the symmetric part of the tensorAijk.
Some of the moments have a particular interpretation,

viz.,

u0 = r, ui
0 = 0, u1 = 2re= 3ru = 3p,

s5d
uij

0 = si j , ui
1 = 2qi .

Here we introduced the specific internal energye=s3/2du of
the ideal gas, the pressurep, the irreducible part of the pres-
sure tensorsi j , and the heat fluxqi.

The values of the moments in equilibriumsEd, when the
phase density is a Maxwellian, are given by

uuEu
a = s2a + 1d!!rua, ui1¯inuEu

a = 0, n ù 1, s6d

wheres2a+1d!!= Ps=1
a s2s+1d. The moments of the collision

term of the Boltzmann equation(1) are

Pi1¯in
a = mE C2aCki1lCi2

¯ CkinlSsfddc. s7d
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C. Generic moment equation

Multiplication of the Boltzmann equation with
mC2aCki1Ci2

. . .Cin
l and subsequent integration over velocity

space yields, after some rearrangement, the general equation
for the moments(4),

Dui1¯in
a

Dt
+ 2aui1¯ink

a−1 Dvk

Dt

+
n

2n + 1
s2a + 2n + 1duki1¯in−1l

a
Dvkinl

Dt
+

]ui1¯ink
a

]xk

+
n

2n + 1

]uki1¯in−1l
a+1

]xkinl
+ 2aui1¯inkl

a−1 ]vk

]xl

+ 2a
n + 1

2n + 3
uki1¯inl

a
]vkkl

]xk
+ 2a

n

2n + 1
ukki1¯in−1l

a ]vk

]xkinl

+ nukki1¯in−1l
a

]vkinl

]xk
+ ui1¯in

a ]vk

]xk

+
nsn − 1d
4n2 − 1

s2a + 2n + 1duki1¯in−2l
a+1

]vin−1

]xkinl
=

1

«
Pi1¯in

a . s8d

Note that all moments are trace free, and additional trace free
tensors are made explicit by means of angular brackets. The
derivation of the equation above requires multiple use of the
relation24

C2aCki1lCi2
¯ CkinlCk = C2aCki1lCi2

¯ CiCukl

+
n

2n + 1
C2a+2Cki1lCi2

¯ Cin−1
dkinlk.

The set of infinitely many moment equationssa→` ,n
→`d is equivalent to the Boltzmann equation. We are inter-
ested in limits of the Boltzmann equation given by orders of
the Knudsen number«, and due to this equivalence we can
perform the limiting process on the moment equations, rather
than on the Boltzmann equation itself.

D. Conservation laws

First, we consider the conservation laws, that is, those
equations which, by Eq.(2), have no production. Fora
=0,n=0 we obtain the mass balance

Du0

Dt
+ u0]vk

]xk
= 0,

and fora=1,n=0 we find the balance of internal energy as

Du1

Dt
+

]uk
1

]xk
+ 2ukl

0 ]vk

]xl
+

5

3
u0]vk

]xk
= 0.

Note that by means of Eq.(5) these two equations can be
brought into their usual textbook form

Dr

Dt
+ r

]vk

]xk
= 0, s9d

3

2
r

Du

Dt
+ ru

]vk

]xk
+

]qk

]xk
+ skl

]vk

]xl
= 0. s10d

For the choicea=1,n=1 we obtain the balance of momen-
tum

r
Dvi

Dt
+ u

]r

]xi
+ r

]u

]xi
+

]sik

]xk
= 0. s11d

There are no further moment equations with vanishing pro-
duction terms.

E. Scalar moments

For scalar momentssn=0d, the general equation(8) re-
duces to

Dua

Dt
+ 2auk

a−1Dvk

Dt
+

]uk
a

]xk
+ 2aukl

a−1]vk

]xl
+

2a + 3

3
ua]vk

]xk
=

1

«
Pa.

Next, we introduce the difference between the scalar vari-
ables and their equilibrium values as

wa = ua − uuE
a s12d

and rewrite the scalar equations for these new variables,
where all time derivatives ofr ,u ,vi are replaced by means
of the conservation laws. This yields

Dwa

Dt
−

2a

3
s2a + 1d!!ua−1]qk

]xk

−
2a

3
s2a + 1d!!ua−1skl

]vk

]xl
+ 2aukl

a−1]vk

]xl
− 2auk

a−1 ]u

]xk

− 2auk
a−1u

] ln r

]xk
− 2a

uk
a−1

r

]skl

]xl
+

]uk
a

]xk

+
2a + 3

3
wa]vk

]xk
=

1

«
Pa.

Of course, fora=0 anda=1, the equations are identically
fulfilled, so that the above equation makes sense only fora
ù2.

The production term will be of the form

Pa = −
1

t
o
b

Cab
s0dua−bwb,

whereCab
s0d is a dimensionless matrix, andt is the mean free

time. Mean free time and matrixCab
s0d fa,bù2g will be dis-

cussed in Sec. II I below.

F. Vector moments

For vectors, the general equation(8) reduces to

Dui
a

Dt
+ 2auik

a−1Dvk

Dt
+

2a + 3

3
uaDvi

Dt
+

]uik
a

]xk
+

1

3

]ua+1

]xi

+ 2auikl
a−1]vk

]xl
+

4a

5
ukil

a
]vkkl

]xk
+

2a

3
uk

a]vk

]xi

+ uk
a]vi

]xk
+ ui

a]vk

]xk
=

1

«
Pi

a.
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We introduce the quantitieswa in the vector equation,
and replace the time derivatives of the velocity to obtain

Dui
a

Dt
+

as2a + 3d!!
3

rua ]u

]xi
−

2a + 3

3
wa ]u

]xi

− 2auik
a−1 ]u

]xk
− 2auik

a−1u
] ln r

]xk
−

2a + 3

3
wau

] ln r

]xi

− 2a
uik

a−1

r

]skl

]xl
−

2a + 3

3

wa

r

]sik

]xk
−

s2a + 3d!!
3

ua]sik

]xk

+
]uik

a

]xk
+

1

3

]wa+1

]xi
+ 2auikl

a−1]vk

]xl
+

2a + 5

5
ui

a]vk

]xk

+
2a + 5

5
uk

a]vi

]xk
+

2a

5
uk

a]vk

]xi
=

1

«
Pi

a. s13d

This equation is relevant foraù1. Note thatw1=0. Here, the
expression for the collision production is similar as for the
scalar quantities,

Pi
a = −

1

t
o
b

Cab
s1dua−bui

b s14d

with a dimensionless matrixCab
s1d fa,bù1g that will be dis-

cussed in Sec. II I below.

G. Rank-2 tensor moments

After replacing the time derivatives of velocity by Eq.
(11), the equations for tensors of rank 2 read

Duij
a

Dt
− 2a

uijk
a−1

r
S ]skl

]xl
+ u

]r

]xk
+ r

]u

]xk
D

−
2

5
s2a + 5d

ukil
a

r
S ]sk jlk

]xk
+ u

]r

]xk jl
+ r

]u

]xk jl
D

+
]uijk

a

]xk
+

2

5

]ukil
a+1

]xk jl
+ 2auijkl

a−1]vk

]xl
+

6a

7
uki j l

a
]vkkl

]xk

+
4a

5
ukkil

a ]vk

]xk jl
+ 2ukkil

a
]vk jl

]xk
+ uij

a ]vk

]xk
+

2

15
s2a + 5dwa+1

+
2

15
s2a + 5d!!rua+1

]vkil

]xk jl
=

1

«
Pi j

a . s15d

This equation is relevant foraù0. Again, the expression for
the collision production has the form

Pi j
a = −

1

t
o
b

Cab
s2dua−buij

b s16d

with a dimensionless matrixCab
s2d fa,bù0g.

H. General equation

For moments of order higher than 2, the general equation
reads

Dui1¯in
a

Dt
− 2a

ui1¯ink
a−1

r
S ]skl

]xl
+ u

]r

]xk
+ r

]u

]xk
D −

n

2n + 1
s2a + 2n + 1d

uki1¯in−1l
a

r
S ]skinlk

]xk
+ u

]r

]xkinl
+ r

]u

]xkinl
D +

]ui1¯ink
a

]xk

+
n

2n + 1

]uki1¯in−1l
a+1

]xkinl
+ 2aui1¯inkl

a−1 ]vk

]xl
+ 2a

n + 1

2n + 3
uki1¯inl

a
]vkkl

]xk
+ 2a

n

2n + 1
ukki1¯in−1l

a ]vk

]xkinl
+ nukki1¯in−1l

a
]vkinl

]xk
+ ui1¯in

a ]vk

]xk

+
nsn − 1d
4n2 − 1

s2a + 2n + 1duki1¯in−1l
a+1

]vin−1

]xkinl
=

1

«
Pi1¯in

a . s17d

This equation is relevant foraù0. Again, the expression for
the collision production is similar as for the scalar quantities,

Pi1¯in
a = −

1

t
o
b

Cab
sndua−bui1¯in

b

with dimensionless matricesCab
snd fa,bù0g.

I. The matrices on the right-hand side

The production terms are computed from the collision
term Ssfd by Eq. (7) and it follows that the matricesCab

snd

depend on the specific form of the collision term. The

computation of the production terms requires the knowledge
of the distribution functionf in terms of the moments.
There are only few exceptions, where the production
terms can be computed without detailed knowledge off,
and these are Maxwell molecules, and BGK models.25,26 In
order to keep the presentation in this paper as simple
as possible, we shall consider only these cases in detail, and
the corresponding matricesCab

snd will be presented below.
Nevertheless, we shall introduce specific values forCab

snd only
later in our calculations, in order to give the reader some
flavor of what can be expected for other models of
interaction.

We shall assume that the mean free time is of the form
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1

t
=

1

t0
ru1−s, s18d

wheret0 ands are constants which follow from the details of
the microscopic interaction(s=1 for Maxwell molecules,s
=1/2 for hard spheres), but can also be considered as mea-
surable quantities which can be obtained from viscosity data
(e.g.,s=0.8 for argon).

First we consider the matricesCab
snd for the BGK model,22

where

S = −
1

t
sf − fMd.

It follows that

Pi1¯in
a = − mE C2aCki1lCi2

¯ Ckinl
1

t
sf − fMddc

= −
1

t
sui1¯in

a − ui1¯inuE
a d.

With the equilibrium values(6), and the definition of the
variableswa (12), the production terms result as

Pa = −
1

t
wa ⇒ Cab

s0d = dab sa,b ù 2d,

Pi
a = −

1

t
ui

a ⇒ Cab
s1d = dab sa,b ù 1d,

Pi1¯in
a = −

1

t
ui1¯in

a ⇒ Cab
snd = dab sn ù 2,a,b ù 0d.

For Maxwell molecules, the matricesCab
snd are of lower

triangular form, see Refs. 23 and 25. Here we just give those
entries that we shall need later, viz.,

Cab
s0d = 3

2

3
0 ¯ 0

] � � ]

� 04 sa,b ù 2d,

Cab
s1d = 3

2

3
0 ¯ 0

−
14

3
1 � A

A � 0

�

4 sa,b ù 1d,

Cab
s2d =3

1 0 ¯ 0

−
7

6

7

6
� A

A � 0

�

4 sa,b ù 0d,

Cab
s3d =3

3

2
0 ¯ 0

A � � A
0

�

4 sa,b ù 0d.

For general interaction potentials the situation is more
difficult, and will be discussed in a future paper, where we
shall suggest the Reinecke–Kremer–Grad method.16,17 Es-
sentially, this method uses the Grad method to compute the
phase density as a function of the moments and the micro-
scopic velocityci. That phase density is then used to com-
pute the production terms(7). This procedure adds consider-
able complexity, which we wish to avoid in this first paper on
the method. The reader familiar with the Chapman–Enskog
expansion will see that there is some analogy: the Chapman–
Enskog expansion can be performed easily for Maxwell mol-
ecules and BGK model, while for other interaction potentials
one has to solve integral equations by expansions in Sonine
polynomials.1 The Reinecke–Kremer–Grad method must be
considered as the equivalent of this when one operates with
moment equations instead of the Boltzmann equation.

For now we shall just assume that the matrices are
invertible—in particular, that will be the case for the trian-
gular matrices of the Maxwell molecules, and the unit matri-
ces of the BGK model. However, we shall introduce the
matrices given above only towards the end of the computa-
tion, so that we can present more general results for future
reference.

III. THE ORDER OF MAGNITUDE OF MOMENTS

We shall now assign orders of magnitude to the mo-
ments, and then construct new sets of moments, such that at
each order of magnitude we have the minimal number of
variables.

We base the discussion on a Chapman–Enskog-like ex-
pansion of the moments, with« as smallness parameter. All
moments are expanded according to

ui1¯in
a = o

b=0
«bui1¯inubu

a = «0ui1¯inu0u
a + «1ui1¯inu1u

a

+ «2ui1¯inu2u
a + «3ui1¯inu3u

a + ¯

s19d

and a similar series for thewa.
We shall say thatui1¯in

a is of leading orderl if ui1¯inub
a

=0 for all b,l. We emphasize that we are not interested in
computing the expansion coefficientsui1¯inub

a , but only in
finding the leading order.

A. Zeroth and first order expansion

For the evaluation of the order of magnitude, it is impor-
tant to note that the production terms are multiplied by the
factor 1/«. If the above expansion is inserted into the mo-
ment equations for the nonconserved quantities, it becomes
immediately clear that
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wu0u
a = ui1¯inu0u

a = 0 s20d

for all moments. This follows from balancing the factors of
1/« on both sides of the equations—there are none of these
on the left-hand side, and thus the above result. In other
words, all quantities that are not conserved are at least of first
order.

In the next step, we balance the factors of«0 in the
equations, and find

0 = −
1

t
o
b

Cab
s0dua−bwu1u

b ,

as2a + 3d!!
3

rua ]u

]xi
= −

1

t
o
b

Cab
s1dua−bui u1u

b ,

s21d
2

15
s2a + 5d!!rua+1

]vkil

]xk jl
= −

1

t
o
b

Cab
s2dua−buij u1u

b ,

0 = −
1

t
o
b

Cab
sndua−bui1¯inu1u

b .

It follows that the leading order of vectors and rank-2 ten-
sors,ui

a and uij
a, is the first order, while the nonequilibrium

parts of the scalar moments,wa, and the higher moments
ui1¯in

a snù3d are at least of second order.

B. Second order

Next, we have a look at the second order quantities.
Since the vectors and rank-2 tensors are already known to be
of first order in«, we have to consider only the other mo-
ments. We make the equations for tensors of ranks 3 and 4
explicit. Keeping only factors of«1 in the equations[note
that, e.g.,ui

a is a Os«d contribution] yields

−
2a

3
s2a + 1d!!ua−1]qk

]xk
−

2a

3
s2a + 1d!!ua−1skl

]vk

]xl

+ 2aukl
a−1]vk

]xl
− 2auk

a−1 ]u

]xk
− 2auk

a−1u
] ln r

]xk
+

]uk
a

]xk

= −
1

t
o
b

Cab
s0dua−bwu2u

b , s22d

−
3

7
s2a + 7duki j l

a Fu
] ln r

]xkkl
+

]u

]xkkl
G +

3

7

]uki j l
a+1

]xkkl

+
6

35
s2a + 7dukil

a+1 ]v j

]xkkl
= −

1

t
o
b

Cab
s3dua−buijk u2u

b ,

s23d
12

63
s2a + 9duki jk

a+1 ]vk

]xkll
= −

1

t
o
b

Cab
s4dua−buijkl u2u

b ,

0 = −
1

t
o
b

Cab
sndua−bui1¯inu2u

b , n ù 5.

It follows that the nonequilibrium parts of the scalar mo-
mentswa, and the tensors of ranks 3 and 4 are second order
quantities. All higher moments areat leastof third order. We
will not go further, but it is evident that tensors of ranks 5
and 6 are third order, tensors of ranks 7 and 8 are fourth
order, etc.

C. Minimal number of moments of order O„«…

From our first order result for the scalar and two-tensors,
Eqs. (21), we see that the first order termsui u1

b and uij u1
b are

related to the gradients of temperature and velocity, respec-
tively, and thus they are linearly dependent. We obtain

ui u1u
b = − o

a=1
fCba

s1dg−1as2a + 3d!!
3

t0

u1−s−b

]u

]xi

= − kb
t0

u1−s−b

]u

]xi
,

s24d

uij u1u
b = − o

a=0
fCba

s2dg−1 2

15
s2a + 5d!!

t0

u−s−b

]vkil

]xk jl

= − mb
t0

u−s−b

]vkil

]xk jl
,

wherekb andmb are pure numbers due to our assumptions on
the matricesCab

snd, given as

kb = o
a=1

fCba
s1dg−1as2a + 3d!!

3
, mb = o

a=0
fCba

s2dg−1 2

15
s2a + 5d!!.

s25d

The first few values of these coefficients are

k1 = 15/2, k2 = 105 and m0 = 2, m1 = 14, s26d

for Maxwell molecules, and

k1 = 5, k2 = 70 and m0 = 2, m1 = 14 s27d

for the BGK model.
In particular, pressure deviator and heat flux are given to

first order as

qi u1u =
1

2
ui u1u

1 = −
1

2
k1

t0

u−s

]u

]xi
= − k

]u

]xi
,

s28d

si j u1u = uij u1u
0 = − m0

t0

u−s

]vkil

]xk jl
= − 2m

]vkil

]xk jl
,

where we have introduced heat conductivity and viscosity as
k andm, respectively. Thus, in first order we obtain the laws
of Fourier and Navier–Stokes. Note that the computation of
m and k involves the inverses of the matricesCab

s1d ,Cab
s2d. For

their computation for more general interaction models we
refer the reader to Refs. 16 and 17.
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It follows from Eqs.(24) and (28) that we can write

ui u1u
b =

2kb

k1
ub−1qi u1u, uij u1u

b =
mb

m0
ubsi j u1u.

While these equations relate the first order contributions of
the vector and two-tensor moments, it is now straightforward
to introduce new momentswi

a,wij
a that are of second order

only,

wi
a = ui

a −
2ka

k1
ua−1qi sa ù 2d and

s29d

wij
a = uij

a −
ma

m0
uasi j sa ù 1d

so that

wi
a = mE SC2a−2 −

2ka

k1
ua−1DC2Ci fdc sa ù 2d,

s30d

wij
a = mE SC2a−2 −

ma

m0
uaDCkilCk jlfdc sa ù 1d.

This means that we can formulate a set of moments, where
only si j andqi are of first order, while all other moments are
at least of second order(excluding the conserved moments,
of course).

It is in principle possible to go to higher order with this:
the second order terms ofwi

a (say), when expanded, will be
linearly dependent, and again one can use that to obtain a
minimal set of moments of second order, while the remain-
ing ones can be constructed to be of third order, etc. This is
not necessary for the levels of accuracy that are important in
this paper, and so we shall not pursue this idea further.

IV. THE TRANSPORT EQUATIONS WITH lth ORDER
ACCURACY

In the preceding section we have established the order of
magnitude of the various moments up toOs«2d. Now we ask
what equations we need in order to describe a flow process in
a rarefied ideal gas with an accuracy ofOs«ld. We emphasize
that our interpretation differs from the interpretation of
Müller et al. in Ref. 21, who postulate that a theory of order
Os«ld requires all terms with orders less or equal tol.

In this section, we shall use the smallness parameter« in
a slightly different manner, namely, as an indicator for the
leading order of a quantity. Thus, in any equation we shall
replaceui1¯in

a by «bui1¯in
a whenb denotes the leading order

of ui1¯in
a . This will allow for a proper bookkeeping of the

order of magnitude of all terms in an equation.

A. The conservation laws and the definition of lth
order accuracy

We start the argument by repeating the conservation laws
for mass, momentum, and energy, Eqs.(9), (11), and (10),
which read, when we assign the factor« to the first order
quantitiessi j andqi,

Dr

Dt
+ r

]vk

]xk
= 0,

3

2
r

Du

Dt
+ ru

]vk

]xk
+ «F ]qk

]xk
+ skl

]vk

]xl
G = 0, s31d

r
Dvi

Dt
+ r

]u

]xi
+ u

]r

]xi
+ «

]sik

]xk
= 0.

These equations are not a closed set of equations forr, vi, u,
but contain pressure deviatorsi j and heat fluxqi as addi-
tional quantities, and equations for these are required to ob-
tain a closed set of equations.

We shall speak of a theory oflth order accuracy, when
both, si j andqi, are known within the orderOs«ld.

The equations of orderOs«0d result from Eqs.(20) by
settingsi j =qi =0, that is, by ignoring the terms with the fac-
tor « in the balance laws. This yields the Euler equations for
ideal gases,

Dr

Dt
+ r

]vk

]xk
= 0,

3

2
r

Du

Dt
+ ru

]vk

]xk
= 0,

s32d

r
Dvi

Dt
+ u

]r

]xi
+ r

]u

]xi
= 0.

For higher order accuracy, i.e., first order and higher, we
shall need the moment equations for pressure deviator and
heat flux.

B. Equations for pressure deviator and heat flux

We consider Eq.(15) with a=0 where we introduce the
moments(29) and obtain, after assigning the proper order of
magnitude to the various terms,

«FDsi j

Dt
+

4

5

]qkil

]xk jl
+ 2skkil

]vk jl

]xk
+ si j

]vk

]xk
+

1

t
o
b=1

C0b
s2du−bwij

bG
+ «2]uijk

0

]xk
= − ruFsi j

m
+ 2

]vkil

]xk jl
G . s33d

Here we have used that

o
b=0

C0b
s2dmb = o

a,b=0
C0b

s2dfCba
s2dg−1 2

15
s2a + 5d!!

= o
a=0

d0a
2

15
s2a + 5d!! = 2

and

1

tm0
=

ru

2m
,

wherem is the viscosity. The last two equations follow di-
rectly from Eqs.(25) and (28).

The underlined term of orderOs«d, s1/tdob=1C0b
s2du−bwij

b,
appears only when the matrixCab

s2d is not of triangular form.
We shall ignore this term for what follows, in order to re-
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move some additional complexity from the argument, that is,
we shall restrict ourselves to triangular matricesCab

snd from
now on.

The equation for the heat flux results from settinga=1
in (13) where we introduce the second order moments(29),
and assign the proper order of magnitude to obtain(remem-
ber thatw1=0),

«FDqi

Dt
+ S1

2

m1

m0
− 1Dsik

]u

]xk
− siku

] ln r

]xk
+ S1

2

m1

m0
−

5

2
Du

]sik

]xk

+
7

5
qi

]vk

]xk
+

7

5
qk

]vi

]xk
+

2

5
qk

]vk

]xi
+

1

2

1

t
o
b=2

C1b
s1du1−bwi

bG
+ «2F1

2

]wij
1

]xk
+

1

6

]w2

]xi
+ uikl

0 ]vk

]xl
−

sik

r

]skl

]xl
G

= −
5

2
ruFqi

k
+

]u

]xi
G . s34d

Here we have used that

o
b=1

C1b
s1dkb = o

a,b=1
C1b

s1dfCba
s1dg−1as2a + 3d!!

3

= o
a=1

d1a
as2a + 3d!!

3
=

5!!

3
= 5

and

1

tk1
=

1

t0k1
ru1−s =

1

2

1

k
ru,

wherek is the heat conductivity. The last two equations fol-
low directly from Eqs.(25) and (28).

The underlined term of order Os«d, s1/2d
3s1/tdob=2C1b

s1du1−bwi
b, appears only when the matrixCab

s1d is
not of triangular form. This term corresponds to the similar
one in the equation forsi j , and will be ignored for most of
the paper as well.

We close this section by pointing out thatm and k are
Os«d, as aresi j andqi, so that their respective ratiossi j /m,
qi /k areOs«0d. Also t is Os«d andwi

b, wij
b areOs«2d so that

their respective ratio isOs«d.

C. First order accuracy: Navier–Stokes–Fourier
equations

We recall that our goal is to provide the equations for
pressure deviatorsi j and heat fluxqi with an accuracy of a
given order. If we are satisfied with first order accuracy, we
need to consider only the leading terms in Eqs.(33) and(34),
which yield the laws of Navier–Stokes–Fourier,

si j = − 2m
]vkil

]xk jl
, qi = − k

]u

]xi
,

where viscositym and heat conductivityk are given by Eqs.
(25) and (28).

The equations of first order accuracy obtained here co-
incide with the first order Chapman–Enskog expansion. As
will become clear in the following section, the higher order

equations deviate from those obtained by the Chapman–
Enskog method, that is, from the Burnett and super-Burnett
equations. This is welcome, since the higher order
Chapman–Enskog expansion yields unstable equations, and
cannot be used.

D. Second order accuracy: Grad’s 13 moment theory
(slightly linearized )

In the next order, we have to consider all terms in Eqs.
(33) and (34) which have the factors«1 and «0 to obtain
(after setting the formal parameter«=1)

Dsi j

Dt
+

4

5

]qkil

]xk jl
+ 2skkil

]vk jl

]xk
+ si j

]vk

]xk
+ 2ru

]vkil

]xk jl
= −

ru

m
si j ,

s35d

Dqi

Dt
+ S1

2

m1

m0
− 1Dsik

]u

]xk
− siku

] ln r

]xk
+ S1

2

m1

m0
−

5

2
Du

]sik

]xk

+
7

5
qi

]vk

]xk
+

7

5
qk

]vi

]xk
+

2

5
qk

]vk

]xi
+

5

2
ru

]u

]xi
= −

5

2

ru

k
qi .

s36d

Together with the conservation laws(31) these equations
form a closed set of 13 equations for the 13 variables
r ,vi ,T,si j ,qi which are the variables that Grad considered in
his famous 13 moment theory.12,13And indeed, the only dif-
ference to Grad’s equations is that we had to drop the term
−ssik /rds]skl /]xld in the equation for heat flux since it is of
orderOs«2d, and we have the general expressionm1/m0. For
the BGK model and Maxwell molecules, we find from Eqs.
(27) and (26) that m1/m0=7 which yields fs1/2dsm1/m0d
−1g= 5

2, fs1/2dsm1/m0d− 5
2
g=1, which are just the coeffi-

cients in Grad’s original equations.
Thus, with the omission of the second order term,

−ssik /rds]skl /]xld, Grad’s 13 moment equations are the
proper equations of second order accuracy for the description
of rarefied gas flows for Maxwell molecules, or the BGK
model.

Application of the Chapman–Enskog method to the
Boltzmann equation suggests that the second order equations
are the Burnett equations.1,3 However, it is well known by
now that these are unstable,5 and lead to unphysical results.
It is also known that the Burnett equations can be derived by
performing a Chapman–Enskog expansion on the 13 moment
equations, and thus are contained within these.16–18

Grad’s 13 moment equations are known to be stable, and
that alone should be a reason to prefer them. However, they
exhibit subshocks for Mach numbers above 1.65, which are
unphysical.12,15 It is quite difficult to assign a smallness pa-
rameter to shocks, and one must conclude that the failure of
describing smooth shocks is an indicator for the limit of
applicability of the equations. Note, however, that the com-
putation of shock structures with the Burnett or super-
Burnett equations is difficult as well, due to their unstable
character.7,27

The next order of our expansion yields a natural regular-
ization for Grad’s 13 moment equations.
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E. Third order accuracy: Regularized 13 moment
equations of Struchtrup and Torrilhon
(slightly linearized )

To obtain the pressure deviator and the heat flux with
third order accuracy, we have to consider also theOs«2d
terms in Eqs.(33) and (34) so that the equations forsi j and
qi read(after setting«=1)

Dsi j

Dt
+

4

5

]qkil

]xk jl
+ 2skkil

]vk jl

]xk
+ si j

]vk

]xk
+

]uijk
0

]xk

= − ruFsi j

m
+ 2

]vkil

]xk jl
G , s37d

Dqi

Dt
+ S1

2

m1

m0
− 1Dsik

]u

]xk
− siku

] ln r

]xk
+ S1

2

m1

m0
−

5

2
Du

]sik

]xk

+
7

5
qi

]vk

]xk
+

7

5
qk

]vi

]xk
+

2

5
qk

]vk

]xi
+

1

2

]wij
1

]xk
+

1

6

]w2

]xi
+ uikl

0 ]vk

]xl

−
sik

r

]skl

]xl
= −

5

2
ruFqi

k
+

]u

]xi
G . s38d

In addition to the 13 variables, these equations contain the
quantitiesuijk

0 , wij
1, w2, and in order to obtain a closed set of

equations, we have to provide additional equations for these.
As we have seen in Sec. III, the leading order of magnitude
of uijk

0 , wij
1, w2 is Os«2d, and if we restrict ourselves to second

order accuracy in their computation, we compute pressure
deviatorsi j and heat fluxqi within third order accuracy. If
we computeuijk

0 , wij
1, w1 up to third order accuracy, we shall

have fourth order accuracy insi j andqi, and so on.
In this section we are only interested in the leading order

terms, so that we obtain the proper third order theory. The
relevant equation forw2 at Os«2d is Eq.(22) with a=2 where
we have to consider Eqs.(29) again, so that

S2k2

k1
− 20Du

]qk

]xk
+ S4

m1

m0
− 20Duskl

]vk

]xl
+ S2

k2

k1
− 8Dqk

]u

]xk

− 8qku
] ln r

]xk
= −

1

t
C22

s0dw2. s39d

The second order equation foruijk
0 is Eq. (23) for a=0,

3

7

m1

m0
u

]ski j l

]xkkl
− 3ski j lu

] ln r

]xkkl
+

12

5
qkil

]v j

]xkkl

+ 3S1

7

m1

m0
− 1Dski j l

]u

]xkkl
= −

1

t
C00

s3duijk
0 . s40d

The equation forwij
1 results from Eq.(15) with a=1, after

replacinguij
1 by wij

1 by means of(29), and subsequent elimi-
nation of the time derivatives ofsi j andu by means of their
respective balance laws. Keeping only the leading order
terms yields after some algebra

4

5
Sk2

k1
−

m1

m0
Du

]qkil

]xk jl
+

4

5
Sk2

k1
− 7Dqkil

]u

]xk jl
−

28

5
uqkil

] ln r

]xk jl

+ 14ru2S1 −
1

7

m1

m0
DS si j

2m
+

]vkil

]xk jl
D

+
4

7

m1

m0
uSskkil

]vk jl

]xk
+ skkik

]vk

]xk jl
−

2

3
si j

]vk

]xk
D = −

1

t
C11

s2dwij
1 .

s41d

The last three equations yield the proper closure of Eqs.(37)
and(38) with third order accuracy, when all matricesCab

snd are
of triangular form. Below we shall make the coefficients ex-
plicit for Maxwell molecules and the BGK model.

For both, Maxwell molecules and the BGK model, we
havem1/m2=7 andk2/k1=14 and can use the matrices of
Sec. III so that the above equations for Maxwell molecules
reduce to

w2 = − 12tFu
]qk

]xk
+ uskl

]vk

]xl
+

5

2
qk

]u

]xk
− qku

] ln r

]xk
G ,

uijk
0 = − 2tFu

]ski j l

]xkkl
− ski j lu

] ln r

k]xkl
+

4

5
qkil

]v j

]xkkl
G , s42d

wij
1 = −

24

5
tFu

]qkil

]xk jl
+ qkil

]u

]xk jl
− uqkil

] ln r

]xk jl

+
5

7
uSskkil

]vk jl

]xk
+ skkil

]vk

]xk jl
−

2

3
si j

]vk

]xk
DG .

These are just the regularized 13 moment equations of
Struchtrup and Torrilhon,19 with the omission of some terms
which are nonlinear insi j andqk. These nonlinear terms are
not present here, since they add terms of third order touijk

0 ,
wij

1, w1, which are ignored in our third order theory. How-
ever, these terms would be present in a fourth order theory,
together with additional contributions from other moments.

For the BGK model the equations bear different factors,

w2 = − 8tf¯g, uijk
0 = − 3tf¯g, wij

1 = −
28

5
tf¯g,

where the square brackets stand for their counterparts in(42).
The R13 equations were discussed in great detail in

Refs. 7 and 19 where it is shown that they contain the Bur-
nett and super-Burnett equations, are linearly stable for all
wavelengths and/or frequencies, show phase speeds and
damping coefficients that match experiments better than
those for the Navier–Stokes–Fourier equations or the original
Grad 13 moments system, exhibit Knudsen boundary layers,
and lead to smooth shock structures for all Mach numbers.

In short, the R13 equations form a new and meaningful
system of equations for the description of rarefied gas flows
with third order accuracy.
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V. DISCUSSION

A. Higher order accuracy

We shall not go further with developing the equations at
higher order accuracy. However, it is clear that the next level
of accuracy—fourth order—will contain full balance laws
for uijk

0 , wij
1, w2, that is, equations of the forms]f /]td

+fspace derivativesg=−s1/tdf. The resulting equations
should then be equivalent to a Grad moment system with 26
moments, as it can be found, e.g., in Ref. 14. The next
order—the fifth—should then be the regularization of the 26
moment system, similar as the third order is the regulariza-
tion of the second order 13 moment case.

In this context, we would like to mention that the(first
order) NSF equations are the regularization of the(zeroth
order) Euler equations. Altogether, the following picture
emerges: Equations at even order(zeroth, second, fourth,…)
are of the Grad moment type, and hyperbolic, while equa-
tions at odd orders(first, third,…) form the regularization of
these hyperbolic equations. Hyperbolic equations of Grad
moment type lead to shocks or subshocks when the inflow
velocity into the shock exceeds the largest characteristic ve-
locity of the system,14,15 and these shocks are an artefact of
the theory, and cannot be observed in experiments. The regu-
larization of the hyperbolic equations(5 the odd order ap-
proximations) smoothens these shocks, as was shown for the
R13 equations in Ref. 7, and yields smooth shock structures
at any Mach number.

The complexity of the method increases substantially
when we are not dealing with the BGK model, or Maxwell
molecules. Then, the second order equations(35) and (36)
contain the additional terms

1

t
o
b=1

C0b
s2du−bwij

b ,
1

2

1

t
o
b=2

C1b
s1du1−bwi

b

and, for a second order closure, we have to provide thewij
b,

wi
b within their leading orderOs«2d. They will have a form

similar to Eq.(42). For the third order, full balance equations
for the wij

b, wi
b are required. For this, it will be necessary to

construct new variablesw̃ij
b, w̃i

b such that a minimum number
of these is of second order, similar to the procedure outlined
in Sec. III C.

B. Comparison with Chapman–Enskog method

The most pressing question on the method introduced in
this paper is probably, where the differences are to the
Chapman–Enskog method, and why our method gives stable
and meaningful equations at each level of approximation,
while the Chapman–Enskog method does not.

The Chapman–Enskog expansion aims at finding the co-
efficients in the expansion(19) expressed solely through gra-
dients (of any order) of its basic variables, mass densityr,
temperatureu, and velocityvi. This is done by an iterative
procedure, where the result of ordern is used to compute the
expressions at ordern+1.

Our method considers all moments as quantities in their
own right, without aiming at expressions for the expansion
coefficients. In particular, no iteration process occurs, so that

the higher order contributions are independent of the lower
order ones. Here, we mention recent work by Spiegel and
Thiffeault who use their own variant of an iterative expan-
sion to compute transport equations up to second order of the
Knudsen number.28 While they argue that their method is
different from, and better than, the Chapman–Enskog
method, they nevertheless obtain unstable equations at sec-
ond order. One might conclude that the independence of our
higher order contributions of the lower ones is related to the
stability of our equations(which is proven up to order 3, and
expected at any order).

The Chapman–Enskog method provides terms up to a
definite order, while the equations that we found above con-
tain higher order terms in the sense of the Chapman–Enskog
expansion. This can be seen nicely in Ref. 29, where the
authors perform a Chapman–Enskog expansion to infinite
order of the linearized Grad equations(our second order set).
It seems that these higher order terms(in the Chapman–
Enskog sense) in our equations are responsible for the stabi-
lization, and the better agreement with experiments, when
compared to the higher order Chapman–Enskog expansions,
i.e., the Burnett and super-Burnett equations. Some discus-
sion of this can also be found in Refs. 7 and 19.

When this answer seems to be vague, the reason will be
that no definite statement on why the higher order Chapman–
Enskog expansions lead to unstable equations is available in
the first place.

The Chapman–Enskog expansion can be performed on
third order equations, i.e., the R13 equations[(37), (38), and
(42)], by setting

si j = si j
s0d + «si j

s1d + «2si j
s2d + «3si j

s3d + ¯ ,

qi = qi
s0d + «qi

s1d + «2qi
s2d + «3qi

s3d + ¯

and then computing the expansion coefficientssi j
sbd, qi

sbd in
terms of gradients ofr, vi, u. As was shown in Ref. 19 for
the linear, three-dimensional case, and in Ref. 7 for the non-
linear, one-dimensional case, the resulting equations are the
Burnett equations at second order, and the super-Burnett
equations at third order of the expansion. Evidently, the R13
equations are a more complete set of equations at third order.

To conclude, we summarize the advantages of our
method against the Chapman–Enskog method which are as
follows: stable equations at any order, better agreement with
experiments, and a simpler derivation of the equations.

C. Comparison with the Grad method

Let us discuss the main differences between our method,
and Grad’s method.12–14

In the Grad method one assumes some set of moments—
not necessarily 13—as basic variables, and then writes the
moment equations for these. These equations do not form a
closed set of equationsa priori, since they contain some
higher moments that must be related to the chosen set of
variables. Since all moments are defined as integrals of the
phase density, this problem is solved by construction of a
phase densityfG which depends explicitly on the chosen set
of variables, and the microscopic velocityCi (fG is a poly-
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nomial in Ci times the local Maxwellian). The Grad phase
density fG allows then to compute expressions forall mo-
ments in terms of the variables, and the system of equations
for the variables is closed.

There is no statement on which sets of moments one
should use, but experience shows that more moments lead to
better results—many examples of this can be found in Ref.
14, see also Ref. 30. Nevertheless, the 13 moment case is the
preferred one, since all variables involved have a clear physi-
cal interpretation.

In short, the main feature of the Grad method is that it
provides a certain phase density, and allows only states that
can be described by such a function. With Karlinet al.,20 we
can say that the Grad method assumes a nonequilibrium
manifold, and forces the gas to stay on that manifold. There
is no argument from physics on why the gas should be re-
stricted to that nonequilibrium manifold, although attempts
are available, which involve entropy maximization
methods.14

The problem is centered in the question why a certain set
of moments should be just enough to describe the gas
properly—after all, the gas is not aware of our choice of
variables.

Only for the simplest system of Grad type, the Euler
equations, is an entropy based argument valid: the Boltz-
mann collision term forces the gas towards the local Max-
wellian, which forms the equilibrium manifold of the Boltz-
mann equation, and maximizes entropy. There is no
intermediate nonequilibrium manifold for the Boltzmann
collision term to which the gas would relax before reaching
the final—Maxwellian—equilibrium. Intermediate equilibria
are possible, however, in more complex systems where pro-
cesses with distinct mean free times occur, e.g., in the pho-
non gas.31

Extended thermodynamics14 has a strong relationship to
the Grad method, and similar arguments can be applied.

The method presented in this paper is quite different
from the Grad method, although the equations obtained bear
a strong similarity to Grad’s 13 moment set, and the R13
equations. More significant are the differences: In this paper,
we have used a thorough analysis of the orders of magnitude
of moments, and the order of accuracy of the moment equa-
tions. The moments that appear in the equations of chosen
order follow from that analysis. Moreover, the Grad phase
density fG was not required to obtain closed sets of equa-
tions.

Compared to our second order equations(36) and (37),
the Grad equations for 13 moments contain the term
−ssik /rds]skl /]xld in the heat flux equation. This term is of
second order, but contributes to third order in the heat flux.
Accordingly, this term appears in our third order equations
(37) and (38), but there are additional third order terms that
must be accounted for, viz.,]uijk

0 /]xk in the equation forsi j ,
and s1/2ds]wij

1 /]xkd+s1/6ds]w2/]xid+uikl
0 s]vk/]xld in the

equation forqi. Accordingly, the original Grad 13 equations
stand in between the orders of magnitude, since they contain
some(in fact only one), but not all terms of third order.

D. Comparison with the original derivation of the R13
equations

Some relaxation of the strong requirements of the Grad
method can be found in approximations which allow states
also in the vicinity of the(assumed) nonequilibrium mani-
fold. Most prominently this idea is pursued by Karlin and
Gorban, e.g., see Refs. 20 and 29, and the references therein,
and just recently by Struchtrup and Torrilhon, whose regu-
larized 13 moment equations(R13) allow for deviations
from Grad’s 13 moment manifold.7,19 In fact, their derivation
of the R13 equations can be described as a first order
Chapman–Enskog expansion centered in Grad’s 13 moment
phase density, and not in the Maxwellian as in the standard
Chapman–Enskog expansion. For this, the Grad equations
for 26 moments are computed, and then run through a
Chapman–Enskog-like expansion in the Knudsen number,
where only the equations for higher moments(denoted as
mijk =uijk

0 , Rij =wij
1, D=w2) are expanded, while the equations

for pressure deviatorsi j and heat fluxqi are not expanded.
Thus, the method of Struchtrup and Torrilhon takes the Grad
method for granted, and just derives a regularization by ig-
noring certain terms that are of higher order in the Knudsen
number.

In the present paper, however, the R13 equations re-
sulted from accounting for orders of magnitude and accu-
racy.

Indeed, by means of our order of magnitude argument
we found Eqs.(42), while the original R13 equations can be
written as19

wuR13u
2 = − 12tF¯−

1

%
qj

]s jk

]xk
G ,

uijk uR13u
0 = − 2tF¯−

ski j u

%

]skkll

]xl
G ,

wij uR13u
1 = −

24

5
tF¯−

1

r
qkil

]su jlk

]xk
−

5

6

si j

%

]qk

]xk

−
5

6

si j

%
skl

]vk

]xl
G ,

where the dots indicate the same terms as in(42), so that
only those terms are explicitly shown above that are added in
the original R13 equations. A short glance suffices to see that
these additions are of third order, which means they contrib-
ute to the fourth order insi j and qi. However, a careful
analysis of the full fourth order would reveal that these are
not the only fourth order terms, so that the original R13
equations stand in between third and fourth order, just as the
original Grad equations stand in between second and third
order.

E. Consistent order extended thermodynamics
(COET)

As we said earlier, the present order of magnitude ap-
proach owes its fundament to the ideas of Mülleret al., pre-
sented in Ref. 21. These authors recognized that the order of
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magnitude of moments(in a Chapman–Enskog sense) can be
used as the building block for a consistent hierarchy of equa-
tions in the orders of the Knudsen number.

The ideas presented in this paper differ from COET
mainly in the definition of the order of accuracy of the set of
equations. COET assumes that all terms in all moment equa-
tions up to the orderOs«ld must be taken into account for a
theory that aims to be accurate atlth order.

At first, these are the moment equations for all moments
of order bøl under omission of higher order terms. How-
ever, these equations split into two independent subsystems,
and only a smaller number of equations(and variables) re-
main as equations of importance.

In our method, we do not ask for the order of terms in all
moment equations, but of the order of magnitude of their
influence in the conservations laws, i.e., on heat flux and
stress tensor. As became clear, a third order accuracy in the
equations does not require to provide balance laws for all
moments that have third order contributions. Rather it is suf-
ficient to havesi j andqi up to third order, and the moments
uijk

0 , wij
1, w1 to only second order.

Müller et al., however, due to their different philosophy,
require the momentsuijk

0 , wij
1, w1 to third order accuracy, and

need additional moments up to third order, as becomes clear
from Eq.(5.7) in Ref. 21. Accordingly, their number of vari-
ables is higher for the third order than in our theory.

In our interpretation of the order of accuracy of equa-
tions, the third order COET will have higher than third order
accuracy(but might stand in between orders of magnitude,
similar to original Grad 13 and original R13 equations).

Müller et al.state that their method is independent of the
phase density. This is right only as long as they use Maxwell
molecules or the BGK model to describe collisions. The
same is true for our approach, and we have made clear that
other interaction models will require a relation between
phase density and models, in order to compute the produc-
tion termsPi1¯in

a , Eq. (7).

VI. CONCLUSIONS

In the present paper we have introduced a method to
develop transport equations for rarefied gases up to a given
order of the Knudsen number. We performed the method to
find the zeroth to third order approximations which turn out
to be the Euler and Navier–Stokes equations, the slightly
linearized Grad 13 moment equations, and the slightly lin-
earized R13 equations of Struchtrup and Torrilhon, respec-
tively.

All these sets of equations are known to be stable, and to
give meaningful results in accordance with experiments
(within the limits of their applicability). For this paper we do
not present any solution of these equations, and we refer the
interested reader to the cited literature.

Our method competes with the classical methods of ki-
netic theory, the methods of Chapman–Enskog and Grad, and
we have given arguments why our method should be pre-
ferred over both.

The main advantage over the Chapman–Enskog expan-
sion is that the higher order equations are stable, and yield

meaningful results, while the higher order Chapman–Enskog
expansions(i.e., the Burnett and Super-Burnett equations)
yield unstable equations and do not contribute to a better
description of rarefied gases. Moreover, the development of
higher order Chapman–Enskog expansions is forbiddingly
complicated, while the method presented here allows a rela-
tively easy development. We also repeat that the(second
order) Burnett equations and the(third order) super-Burnett
equations can be derived from our second and third order
equations by a Chapman–Enskog expansion, so that the
equations are more general.

The main advantage of this method above the Grad
method is that no doubt remains which variables one has to
consider when a certain order of accuracy should be
achieved, and that it avoids the use of nonequilibrium mani-
folds that have no backing within the physics and mathemat-
ics of the Boltzmann equation.

In particular, we have applied our method to Maxwell
molecules and the BGK model, and have only briefly men-
tioned how the method could be extended to other collision
models. The derivation of the proper second order system for
arbitrary interaction terms—a set of 13 equations forr, vi, u,
si j , qi—is the natural next step.

The equations of second and higher order need to be
furnished with(jump and slip) boundary conditions in order
to become useful tools for simulation of rarefied gas flows,
and we continue to work on how these can be derived from
the boundary conditions for the Boltzmann equation.

The method developed in this paper gives a complicated,
but nevertheless straightforward method to develop stable
transport equations up to a certain order in the Knudsen
number from the Boltzmann equation, or any other micro-
scopic transport equation that contains a suitable smallness
parameter. Thus, the method can be applied not only to BGK
model and Maxwell molecules, but to general interaction
models for particles, as well as to radiative transfer, electron
transport in solids, etc. The application to general interaction
potentials for the Boltzmann equation was carried out al-
ready, and a paper is to appear.32

Moreover, our method gives a common background for
equations that so far were considered to be of completely
different origin, namely, the Navier–Stokes–Fourier equa-
tions, and Grad’s 13 moment equations(as well as the R13
equations). At the same time the method discards the Burnett
equations, which are still widely discussed despite their well
known instabilities. Indeed, these do not appear, and instead
the stable Grad13 and R13 equations are emerging as the
transport equations of second and third order.
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