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Abstract
Boundary conditions are the major obstacle in simulations based on advanced continuum
models of rarefied and micro-flows of gases. In this paper we present a theory how to com-
bine the regularized 13-moment-equations derived from Boltzmann’s equation with boundary
conditions obtained from Maxwell’s kinetic accommodation model. While for the linear case
these kinetic boundary conditions suffice, we need additional conditions in the non-linear
case. They are provided by the bulk solutions obtained after properly transforming the
equations while keeping their asymptotic accuracy with respect to Boltzmann’s equation.

After finding a suitable set of boundary conditions and equations, a numerical method for
generic shear flow problems is formulated. Several test simulations demonstrate the stable
and oscillation-free performance of the new approach.

1 Introduction
Gas flows in rarefied situations or micro-scale settings cannot be described by classical fluid
models like the system of Navier-Stokes-Fourier (NSF). This is due to lack of sufficiently many
collisions of particles, i.e., the Knudsen number − the ratio of mean free path and macroscopic
length − is too large and the flow cannot be considered to be near equilibrium. Instead, the
statistical approach of kinetic gas theory is required to model those processes as described, e.g.,
in the textbooks [7], [8] and [38]. Moment equations as introduced by Grad [10], [11] offer a
possibility to reduce the complex statistical description of kinetic theory to a continuum model
for macroscopic fields, see [3], [19]. Various modifications have been proposed, e.g., in [9], [13],
[16] and [20].
The regularized 13-moment-equations (R13) derived in [31] may be considered as the most

promising extension of Grad’s equations. They combine high physical accuracy and stability,
see [37], [36]. Moreover, R13 was shown to satisfy a consistent ranking in terms of orders
of magnitude, see [28], and an entropy inequality in the linear case [32]. Especially due to
its stability, the R13-system succeeds over models obtained by high-order Chapman-Enskog
expansion as used, e.g., in [2], [17] and [39]. In general, high-order Chapman-Enskog expansions
are proven to be linearly unstable [5], [23]. See the textbook [26] for an overview of different
model equations in kinetic gas theory.
Due to the modelling successes, the interest in computations based on moment equations

is vivid, e.g., in [1], [21], [24] and [33]. Computational methods for the R13-system have been
proposed in [35] for the initial value problem and in [12] for the boundary value problem. The
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Boundary Conditions for R13 Equations

major obstacle to overcome in simulations is the modelling of suitable boundary conditions.
Here, the paper of Gu and Emerson [12] may be regarded as pioneering work. They showed that
moment relations obtained from an accommodation model are in principle sufficient to describe
boundary conditions for R13. However, in their work inconsistencies occur and oscillations are
reported which are likely due to insufficient modelling of the boundary.
The present paper establishes a theory of boundary conditions for the regularized 13-moment-

equations based on physical and mathematical requirements for the system. As general setting
we shall consider shear flows in a parallel channel. In spite of the apparent one-dimensional
character of the setting, the full two-dimensional set of R13-variables is involved. This makes
the process a relevant model also for more complex computations. For boundary conditions,
we follow the approach originally given by Grad in [10] based on the kinetic accommodation
model of Maxwell [18], similar to the approach in [12]. This gives a certain number of boundary
conditions. However, the mathematical structure of the equations shows that the linear and
non-linear cases require different numbers of boundary conditions. Our major hypothesis is
that, instead of finding additional boundary conditions for the non-linear case, the equations
should be transformed such that the number of required boundary conditions remains the same.
To be precise, the transformed equations will supply additional conditions which complement
the boundary conditions, also in the untransformed case. The transformation of the system is
possible as long as we require the asymptotic accuracy of the system in terms of the Knudsen
number to stay the same. The asymptotic accuracy is given by the comparison of the Chapman-
Enskog-expansion of the R13-system with the Chapman-Enskog-expansion of the Boltzmann
equation. We shall use the fact that higher order terms in the R13-equations may be changed
without changing the accuracy. Linear stability is also unaffected by this, since only non-linear
terms are changed. This is sufficient to find a stable system suitable for the boundary conditions
that are available.
In general, emphasis will be put on the additional inherent conditions for specific variables

that are obtained by this method. These relations represent bulk solutions of moments that
can not produce a boundary layer due to restriction to a finite set of moments. We include an
interpretation of the whole method along these lines.
After finding a suitable combination of boundary conditions and transformed equations, a

numerical method is developed based on the R13-system written as a first order system. Incor-
poration of the boundary conditions is straightforward. An empirical convergence study shows
second order numerical accuracy of the method. Various simulation results for channel flows of
Couette- and Poiseuille-type demonstrate stable and oscillation-free behavior. Comparison with
DSMC simulations of Boltzmann’s equation, see [4], show accurate agreement for slow flows and
moderate Knudsen numbers.
The rest of the paper is organized as follows: Sec. 2 presents the R13 equations and their

specialization to steady shear flow. It also discusses the asymptotic accuracy. Sec. 3 is devoted
to the theory of boundary conditions with physical and mathematical remarks, a review of
kinetic boundary conditions and the presentation of our major hypotheses. The linear case of
the R13-system is studied in detail in Sec. 4. The insights of the linear case are generalized to
the non-linear case in two steps in Sec. 5.1 and Sec. 5.2. A deeper interpretation of the formal
procedure is given in Sec. 5.4. The numerical method is described in Sec. 6 and results are
discussed in Sec. 7. An appendix provides a number of detailed bulky matrices which are left
out in the main part for readability.

2 R13 equations
Details of the derivation of the R13 equations for rarefied/micro-flows can be found in [31] and
the textbook [26]. Here we only give the final equations.
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2.1 Full Equations
The basis of the R13 system is given by the conservation laws of mass, momentum and energy,

∂tρ+ div (�v) = 0,
∂tρv+ div (ρvvT + pI+ σ) = ρ f ,

∂t (ρε + 1
2ρv2)+ div (ρεv + 1

2ρv2v + pv + σv+ q) = ρ f · v (1)

where we take the internal energy ρε = 32p for monatomic gases and the temperature θ (in
energy units) satisfies the ideal gas law p = ρ θ. An external body force density is given by ρf .
The R13 equations can be viewed as a generalized constitutive theory for stress tensor σ and
heat flux q. The standard local relations of Navier-Stokes and Fourier are extended to form full
evolution equations for σij and qi. They are given by

∂σij
∂t + ∂σijvk

∂xk
+ 4

5
∂q〈i
∂xj〉

+ 2p ∂v〈i
∂xj〉

+ 2σk〈i
∂vj〉
∂xk

+ ∂mijk
∂xk

= − p
µσij (2)

for the stress tensor, and
∂qi
∂t + ∂qivk

∂xk
+ p∂(σik/ρ)

∂xk
+ 5

2(pδik + σik) ∂θ
∂xk

− σij
�

∂σjk
∂xk

+ qk ∂vi
∂xk

+ (mijk + 6
5q(iδjk)) ∂vj

∂xk
+ 1

2
∂R̂ik
∂xk

= −2p
3µqi (3)

for the heat flux. Both equations form quasi-linear first order equations with relaxation. The
collision frequency is given by p/µ with viscosity µ. Indices with angular brackets indicate the
trace-free symmetric parts of a tensor, while round brackets indicate symmetrized tensors [26].
The remaining unspecified quantities are mijk and R̂ij . They stem from higher moments

contributions in the transfer equations of Boltzmann’s equation. Neglecting these contributions,
i.e., setting mijk = R̂ij = 0, turns the system (1)-(3) into the classical 13-moment-case of Grad
[10], [11]. In [31] gradient expressions are derived for mijk and R̂ij which regularize Grad’s
equations and turn them into a highly accurate micro-flow model. The regularization procedure
gives

mijk = −2µ ∂(σ〈ij/ρ)
∂xk〉

+ 8
10pq〈iσ(NSF)

jk〉 ,

Rij = −24
5 µ ∂(q〈j/ρ)

∂xj〉
+ 32

25pq〈iq(NSF)
j〉 + 24

7ρσk〈iσ(NSF)
j〉k , (4)

R = −12µ ∂(qk/ρ)
∂xk

+ 8
pqkq(NSF)

k + 6
ρσijσ(NSF)

ij .

with R̂ij = Rij + 1
3Rδij and the abbreviations

σ(NSF)
ij = −2µ ∂v〈i

∂xj〉
, q(NSF)

i = −15
4 µ ∂θ

∂xi
. (5)

Note the special structure in (4): The leading expressions are gradient terms that produce
Laplacians of stress and heat flux in their respective equations in (2)/(3). This is similar to
the Navier-Stokes-Fourier system which can be viewed as regularization of the Euler equations.
The next terms in (4) are products of the stress and heat flux with velocity and temperature
gradients. In (4) we left out higher order contributions following [28].
Equations (1)-(4) with (5) form the system of regularized 13-moment-equations.
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2.2 Relation to Boltzmann’s equation and Navier-Stokes-Fourier
We will briefly discuss how the R13 system is related to the equations of Navier-Stokes-Fourier,
and Boltzmann’s equation. These results were obtained in [31] and [37] based on asymptotic
analysis.
The mean collision frequency ν = p

µ appears on the right hand side of the equations (2), (3).Introducing the mean free path at a reference state by

λR = µR
√θR
pR (6)

we define the Knudsen number
Kn = λR

L = µR
√θR

pRL (7)
based on a macroscopic length scale L. The isothermal equilibrium speed of sound √θR gives a
natural velocity scale for the equations and all moment variables can be scaled by a reference
density ρR and appropriate powers of √θR. By defining a time scale by T = L/√θR we can
write the equations in dimensionless form and the Knudsen number only appears as factor 1/Kn
at the right hand side.
Based on the Knudsen number we can derive an asymptotic accuracy of the R13 system

with respect to Boltzmann’s equation. This is done by expanding stress tensor and heat flux in
powers of Kn < 1 for both R13 and Boltzmann. In the case of Maxwell molecules we find∥∥∥σ(R13) − σ(Boltz)∥∥∥+

∥∥∥q(R13) − q(Boltz)∥∥∥ = O (Kn4) (8)
with any appropriate norms for stress and heat flux. This means that any R13 result will differ
asymptotically from a full Boltzmann simulation only inO (Kn4) in the Chapman-Enskog sense.
In the language of [28] this corresponds to third order equations. For comparison we note that
for the laws of Navier-Stokes and Fourier (5) we obtain only∥∥∥σ(NSF) − σ(Boltz)

∥∥∥+
∥∥∥q(NSF) − q(Boltz)

∥∥∥ =O (Kn2) . (9)
This also shows that NSF is asymptotically included in R13 for small Knudsen numbers, i.e.,
for very small Knudsen numbers the R13 system will essentially behave like the NSF equations.
The viscosity µ in (2), (3) links the R13 system to NSF in the asymptotic limit. For power

law potentials the viscosity is given by

µ = µR
( θ

θR
)ω

(10)

with a temperature exponent 0.5 ≤ ω ≤ 1.

2.3 Equations for Steady Shear Flow
This paper considers processes that fall into the class of steady shear flows, including steady
Couette or Poiseuille flows. For the R13 system, shear flow is a multi-dimensional phenomenon
in the sense that it produces a fully multi-dimensional reaction for the stress tensor and heat
flux. Introducing xi=̂(x, y, z), we consider shear flow which is homogeneous in z-direction and
define the remaining non-vanishing parts of stress tensor and heat flux as

σ =

 σxx σ 0

σ σyy 0
0 0 σzz


 , q = (qx, qy , 0) (11)
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Figure1: General shear flow setting. The gas flows between infinte plates with
velocities v(0,1)W and temperature θ(0,1)W . The force F is given by gravity or a
pressure gradient.

where σ = σxy = σyx, and σzz = −12(σxx + σyy) since σ must be trace-free. For the velocity we
assume vy = vz = 0 and

v (x, y, z) = (vx (y) , 0, 0) . (12)
The force acts only in x-direction, f = (F, 0, 0). This setting is valid for channel flows as
displayed in Fig. 1. The gas is confined between two infinite plates at distance L and is moving
solely in x-direction. As driving force either a force F in x-direction is given or the walls are
moving with x-velocities v(0,1)W . In the simplest case the force can be viewed as gravity but it
may also stem from a homogeneous pressure gradient along the x-axis. Additionally, the walls
may be kept at different temperatures θ(0,1)W .
In this setting we have 8 independent variables in the R13 equations, namely {ρ, vx, p, σxx,

σyy , σ, qx, qy}. Optionally, the pressure p can be replaced by the temperature θ. The 5 remaining
relevant constitutive quantities are

{
mxxy ,mxyy ,myyy , R̂xy, R̂yy

}
. The system (1)-(4) reduces

to 13 first order non-linear ordinary differential equations.
The core equations are given by the conservation laws

∂yσ = ρF , (13)
∂y(p + σyy) = 0 , (14)

∂yqy + σ ∂yvx = 0 , (15)
the balance of stress tensor

2σ ∂yvx + 2
5∂yqy + ∂ymxxy = − p

µσxx , (16)
6
5∂yqy + ∂ymyyy = − p

µσyy , (17)
(p + σyy)∂yvx + 2

5∂yqx + ∂ymxyy = − p
µσ , (18)

and heat flux balance
p − σxx

ρ ∂yσ + 5
2σ∂yθ − σ

ρ∂yσyy − σ
ρθ∂yρ + (mxxy + 7

5qy)∂yvx + 1
2∂yR̂xy = −2p

3µqx ,
(19)

p − σyy
ρ ∂yσyy + 5

2(p + σyy)∂yθ − σ
ρ∂yσ − σyy

ρ θ∂yρ + (mxyy + 2
5qx)∂yvx + 1

2∂yR̂yy = −2p
3µqy .

(20)
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For the constitutive equations we note that (5) has non-vanishing contributions only for σ(NSF) =−µ∂yvx, and q(NSF)y = −15
4 µ∂yθ. With this we find from (4) five equations for mijk and R̂ij ,

− p
µmxxy = 2

3p ∂y(σxx/ρ)− 4
15p∂y(σyy/ρ) + 32

75qx∂yvx , (21)
− p

µmyyy = 6
5p ∂y(σyy/ρ)− 8

25qx∂yvx , (22)
− p

µmxyy = 16
15p∂y(σ/ρ) + 32

75qy∂yvx , (23)
and

− p
µR̂xy = 12

5 p∂y(qx/ρ) + 12
5 qx∂yθ + 12

7 θ(σxx + σyy)∂yvx , (24)
− p

µR̂yy = 36
5 p∂y(qy/ρ) + 66

5 qy∂yθ + 36
7 θ σ ∂yvx . (25)

The system (13)-(25) has to be complemented by boundary conditions.

3 Theory of Boundary Conditions
3.1 Mathematical Remarks
The above system (13)-(25) can be written in matrix form as

A (U) ∂yU = P (U) (26)
where U = {ρ, vx, p, σxx, σyy , σ, qx, qy ,mxxy,myyy, mxyy ,Rxy ,Ryy}. The full system is displayed
in (91) in the Appendix. The matrix A is rather bulky but it provides a good overview about
the coupling in the equations.
Consider the formal initial value problem for (26), i.e., the one-sided boundary value problem

where we only prescribe values at y = 0. If N is the dimension of the system and the matrix
A(U) has an eigenvalue λ = 0 with multiplicity α, then we can describe N −α initial conditions
forU. Indeed, the zero eigenvalue induces left eigenvectors {xi}i=1,...α with xi ·A(U) = 0, hence,
if applied to the system (26), conditions of the form xi ·P(U) = 0 for i = 1, ...α. These conditions
can be viewed as constraints for U, which reduce the number of possible initial conditions to
N − α. In practice, these conditions can be used to eliminate α components of the variable
vector U and transform (26) into a system of smaller dimension with non-singular matrix. This
strategy will be exploited in the next sections for the R13 equations.
The case of a boundary value problem is threatened by non-existence and non-uniqueness.

However, in the linear case the argument of the initial value problem carries over and one may
prescribe N − α boundary conditions altogether, i.e., if there are n conditions on the left side,
only N −α−n conditions on the right side are allowed. In the non-linear case, we are confident
that the physical nature of the problem provides us with existence and uniqueness, but rigorous
statements for the full system are hard to obtain.

3.2 Kinetic Boundary Conditions
In kinetic theory the fundamental quantity is the velocity distribution function f (c,x, t) which
is governed by Boltzmann’s equation. Wall boundaries require that the incoming half of the
distribution function (with n ·c > 0, n wall normal pointing into the gas) have to be prescribed.
The most common boundary condition for f is Maxwell’s accommodation model [18]. It

assumes that a fraction χ of the particles that hit the wall are accommodated at the wall and
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Figure2: Example of velocity or temperature jump and Knudsen layer near the
boundary. Only a few mean free pathes away from the wall a near equilibrium
solution (bulk solution) is obtained. Velocity and temperature jumps have to
be corrected for macroscopic models like NSF or R13.

injected into the gas according to a distribution function of the wall fW . This distribution
function is further assumed to be Maxwellian

fW (c) = ρW /m√2πθW 3 exp
(−(c− vW )2

2θW
)

(27)

with θW and vW given by the known temperature and velocity of the wall. The ”wall density”
ρW follows from particle conservation at the wall. The remaining fraction (1−χ) of the particles
are specularily reflected. Since the particles that hit the wall are described by a distribution
function fgas the reflected part will satisfy a analogous distribution function f(∗)gas which follows
from fgas with accordingly transformed velocities.
From this model the velocity distribution function f̃ (c) in the infinitesimal neighborhood of

the wall is given by

f̃ (c) =
{

χfW (c) + (1− χ) f(∗)
gas (c) n · (c− vW ) > 0

fgas (c) n · (c− vW ) < 0 (28)

where n is the wall normal pointing into the gas. This boundary conditions is used in the majority
of simulations based on Boltzmann equation or DSMC [4]. The accommodation coefficient χ
describes the wall characteristics and has to be given or measured. The case of χ = 0 (specular
reflection) represents the generalization of an adiabatic wall (no heat flux, no shear stress) to
the kinetic picture.

3.3 Physical Remarks
The boundary in shear flow problems is governed by two well known effects, velocity slip and
temperature jump, and the Knudsen layer, see, e.g., the text books [7] or [26]. Both phenomena
become relevant only for rarefied or micro-flows, see [14].
Fig. 2 shows a generic sketch of the situation at the wall. The temperature and velocity jump

leads to the fact that the values for θW and vW in the wall will not be assumed in the gas due to
lack of collisions. These jumps can not be deduced from the transport equations alone, but need
to be introduced by the model of the boundary conditions. The Knudsen layer links the strong
non-equilibrium at the wall to the bulk solution away from the boundary. The non-equilibrium
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at the wall can be deduced from the boundary condition for the distribution function (28).
Directly at the wall the distribution function is discontinuous in velocity space and as such far
from a Maxwellian representing equilibrium. Only after sufficiently many collisions, away from
the wall a distribution function close to a Maxwellian will be present. The solution in some
distance from the wall is called bulk solution [34].
Different fluid models will describe the Knudsen layer with different accuracy. The equations

of Navier-Stokes-Fourier cannot describe a Knudsen layer at all. In this case, the jump conditions
are adjusted such that the solution fits to the bulk solution [25], see Fig. 2. The R13 equations
allow for some part of the Knudsen layer but misses out higher order modes [27]. Hence, any
jump conditions for R13 have to be modified in a way similar to that of NSF.

3.4 Grad’s Theory
Any equations for moments are derived from kinetic gas theory. The fundamental assumption
is that the kinetic model (28) will also supply meaningful boundary conditions for moment
equations.
3.4.1 Accommodation Model
When deriving moment equations Grad also discussed boundary conditions, see [10], [11]. The
idea is to take the accommodation model (28) seriously and compute boundary conditions for
moments from it.
Indeed, integration of the wall distribution function (28) after multiplication with any velocity

function ψ(C) results in an equation relating moments at the wall to the wall properties given
by fW . We define Ω = {C ∈ R3} and Ω± = {C ∈ R3 | C · n ≷ 0} with wall normal n as
integration domains and find after some rearrangement∫
Ω

ψ (C) f̃ (C)dC =
∫
Ω−

(ψ (C) + (1− χ)ψ∗ (C)) fgas (C)dC+ χ
∫
Ω+

ψ (CW −V) fW (CW )dCW .
(29)

The first two integrals are evaluated in the frame moving with the gas average velocity vgas and
the particle velocity c is transformed into the peculiar velocity C = c− vgas. The last integral
is evaluated in the frame moving with the velocity of the wall vW and the peculiar velocity is
given by CW = c−vW . Due to these transformations the slip velocity V = vgas − vW appears
which satisfies n ·V = 0. The function ψ∗ is defined by

ψ∗ (C) = ψ (C− 2(n ·C)n) (30)
and represents the evaluation of ψ for the specularily reflected values of C.
The relation (29) can now be evaluated by assuming a specific model for the distribution

function, e.g., the regularized 13 moment distribution function fR13. We set f̃ = fgas = fR13
and different polynomials for ψ give boundary conditions for moments. This strategy is proposed
in [26] and used in [12]. We will further specify and evaluate the strategy in the following.
3.4.2 Shear Flow Boundary Conditions
Before we continue, we specify the wall normal n = (0, 1, 0) and the wall velocity vW = (vW , 0, 0).
This corresponds to the lower wall in Fig. 1. With these specifications we also have ψ∗ (C) =
ψ (Cx,−Cy , Cz). The generalization to arbitrary walls is straightforward.
The problem with (29) is that it describes too many boundary conditions if we count it on both

walls for all functions ψ that produce a variable of the theory. Indeed, if we fix f̃ = fgas = fR13,
every polynomial for ψ would give us a new relation for our moments on the boundary. The first
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step is to restrict ourselves to those ψ that represent fluxes in our equations. This is motivated
from the theory of balance laws which states that at the boundary fluxes, not variables, need to
be prescribed. The C-polynomials that occur as y-fluxes in the two-dimensional R13 equations
are {Cy , CxCy , C2y , C2Cy , C2xCy, C3y , CxC2y , C2CxCy , C2C2y

}. To restrict this list further, we
follow an important observation of Grad [10]: If there is no accommodation at all, χ = 0, any
polynomial of even degree in Cy will produce an identity in (29). Hence, moments of even degree
cannot be controlled when χ = 0. In order to have continuity of the boundary conditions for
χ → 0, we must formulate boundary conditions only for ψ’s that are of odd degree in Cy .
This leaves us with 6 candidates for ψ which we rearrange and linearly recombine to give

ψ (C) ∈ {
Cy, CxCy, (C2 − 7θ)CxCy , C2Cy,

(
C2y − 3

5C2
)

Cy ,
(

C2x −C2z − 2
5C2

)
Cy

}
. (31)

These polynomials represent the fluxes {vy , σ,Rxy, qy, myyy ,mxxy − myzz}. The first one, vy,
gives the conservation of mass at the wall and, thus, a relation for the value of ρW in (27). For
the distribution function of the R13 equations, see Appendix C, we find

P := √θ√θWρW = ρ θ + σyy
2 − Ryy

28θ − R
120θ (32)

The remaining 5 boundary conditions following from (29) and (31) with V = vx − vW read

σ = −ny
√ 2

πθ
χ

2− χ
(

P V + 1
2mxyy + 1

5qx
)

(33)

Rxy = ny
√ 2

πθ
χ

2− χ
(

P θ V − 1
2θmxyy − 11

5 θ qx −P V 3 + 6P(θ − θW )V
)

(34)

qy = −ny
√ 2

πθ
χ

2− χ
(
2P(θ − θW ) + 5

28Ryy + 1
15R + 1

2θ σyy − 1
2P V 2

)
(35)

myyy = ny
√ 2

πθ
χ

2− χ
(2
5P (θ − θW )− 1

14Ryy + 1
75R − 7

5θ σyy−3
5P V 2

)
(36)

mxxy − myzz = −ny
√ 2

πθ
χ

2− χ
(Rxx −Rzz

14 + θ(σxx − σzz)−P V 2
)

(37)

where we used a special ordering in correspondence with the coupling discussed below. Following
the setting of Fig. 1 these boundary conditions have to hold on both sides of the channel with
ny = ±1 for lower (left) and upper (right) wall, respectively. Generalization to an arbitrary
wall of a computational domain is straight forward. For the coupling of the quantities emphasis
lies on linear terms. No linear terms lead to a coupling across all boundary conditions. The
first two equations couple {vx, σ, qy ,mxyy ,Rxy} while the third and fourth equations couple{θ, qx, σyy ,Ryy ,myyy}. The last equation couples essentially {σxx,Rxx,mxxy}.
The steady shear flow setting gives rise to one additional condition. In total, the mass

between the walls should equal a given value M0∫ L/2

−L/2
ρ(y)dy = M0 , (38)

which can be viewed as generalized boundary condition. If vy were allowed to be non-zero, the
balance of mass would join the set of equations. In that case yet another boundary condition
would be required and the condition (38) would be replaced by the boundary condition vy = 0
on both walls. This also shows how the current shear flow setting can be extended to more
generalized situations.
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The boundary conditions (33)-(37) give explicit expressions for the relevant fluxes in terms
of the non-flux quantities. The first condition can be identified as slip condition combining
essentially the slip velocity V with the shear stress σ, i.e., the gradient of velocity in the NSF
model. Similarly, the third equation gives the temperature jump θ − θW in terms of the heat
flux qy, i.e., the gradient of temperature in NSF. The other equations represent jump conditions
for higher order moments.
The accommodation coefficient χ appears as factor in each single equation. Already Grad

[10] proposed to use different values of χ in each equation of (33)-(37), to reflect the fact that
moment equations require a modification as indicated in Fig. 2. We argue that each flux is
accommodated differently at the wall. Correspondingly, we substitute the factor χ/(2 − χ) in
each equation by coefficients βi where i ∈ {σ,Rxy, qy ,myyy ,mxxy}. The standard value of these
coefficients is unity but they may be used as fitting parameters. The same strategy was used in
[12] on a different set of boundary conditions.

3.5 Hypotheses
Investigating the matrix form of the R13 equation (91) reveals that in general detA(U) �= 0,
hence, the system requires a full set of 13 boundary conditions in total. With (33)-(37) and
(38) we have found 11 conditions. The question arises, how this lack of conditions should be
handled?

3.5.1 Coherence of Boundary Conditions
Interestingly, it turns out that detA(U) �= 0 is not valid for all values of U. When evaluating
the linear case A(U0) (see below) we find a zero eigenvalue with multiplicity α = 2. As soon as
there are non-linear terms in the matrix this zero eigenvalue is lost. It follows that in the linear
case all existing boundary conditions are sufficient and the R13-system with kinetic boundary
conditions is well-posed.
This fact strengthens our confidence in the boundary conditions (33)-(37) and leads to the fol-

lowing hypothesis: The transition from a process in the linear regime (small velocity/temperature
differences) to a non-linear process should not change the number of boundary conditions. That
is, describing a non-linear process with R13 should not require more boundary conditions than
describing a linear scenario. Otherwise, if this were not the case, the description could not
be coherent, since smallest non-linear contribution in the equations would require an additional
equation that needed to be dropped in the linear case. To be precise, the kernel of the zero eigen-
values of A(U0) imposes restrictions on the fields as described in Sec. 3.1 that must be viewed
as supplements to the boundary conditions. In general, these kernel conditions would contradict
any additional accommodation boundary conditions. For more interpretation of the situation,
see Sec. 5.4. The hypothesis concerns only the number of boundary conditions. Clearly, there
will be non-linear contributions within the given conditions which are relevant or irrelevant
depending on the non-linearity of the process.

3.5.2 High Order Equivalence
With the above hypothesis we render the boundary conditions (33)-(37) more fundamental than
the system of equations. Indeed, we are now left with the question, how to modify the equations
such that A(U) possesses a zero eigenvalue with multiplicity α = 2 for all values of U , since
only then the boundary conditions will be sufficient.
The reason for success of this approach lies in the fact that the equations allow more flexibility

than the boundary conditions. We require the R13 equations to exhibit an asymptotic accuracy
of fourth order as described in Sec. 2.2. It was shown by the order-of-magnitude approach in [28]

10
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that the equations may be altered in a certain way without influencing the asymptotic accuracy.
This was also employed in [6] to stabilize the Burnett equations. Two systems with the same
asymptotic accuracy will be called equivalent. The task is to find an equivalent system for
(13)-(25) such that the resulting Ã(U) will allow the boundary conditions (33)-(37).
The kernel conditions of the transformed system correspond to bulk solutions. They bear

relevance also for the original R13-equations and can be used as additional boundary conditions
for the original system. An interpretation of the result is given later in Sec. 5.4.
The order-of-magnitude approach (see also [26]) assigns powers of Kn to every moment to

indicate the relevance with which the moments enter the asymptotic accuracy. In this sense σij
and qi are first order quantities and mijk and R̂ij are of second order. Furthermore, the R13
constitutive quantities mijk and R̂ij enter the asymptotic accuracy with an additional factor
Kn. Hence, the constitutive equations for mijk and R̂ij may be altered by terms of O (Kn3)
without reducing the asymptotic accuracy. We will see below that this is sufficient to construct
a system that suits the boundary conditions.

4 Linear Case
The linear case gives an enormous insight into the behavior and coupling of the R13 equation
for shear flow, see also [32]. We linearize the equations around a given rest state at reference
density, temperature and pressure

(ρ, θ, p) = (ρR, θR, pR) , (39)
all other variables vanish in the reference state.
4.1 Equations
After linearization, the equations uncover a striking simplicity by decomposing into three de-
coupled blocks. The first block describes the velocity part with the balances of vx, σ, and qx and
constitutive equations for mxyy and R̂xy , the second block describes the temperature part with
balances of θ, qy , and σyy with constitutive equations for R̂yy and myyy. These two blocks have
mathematically identical structures and the role of the variables could be directly exchanged.
The third block is given by the balance of vy, σxx with constitutive equations for mxxy . This
block is influenced by the temperature part.
To display the decoupling we sort the variable vector as

U =
{
vx, σ, qx,mxyy ,Rxy, θ, qy, σyy , R̂yy ,myyy , ρ, σxx,mxxy

}
(40)

for which the linearized system can be written in the form A∂xU = P(U) with the matrix

A =




0 1ρR 0 0 0 0 0 0 0 0 0 0 0
pR 0 25 1 0 0 0 0 0 0 0 0 0
0 θR 0 0 1

2 0 0 0 0 0 0 0 0
0 16

15θR 0 0 0 0 0 0 0 0 0 0 0
0 0 125 θR 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 5

2pR 0 θR 1
2 0 0 0 0

0 0 0 0 0 0 6
5 0 0 1 0 0 0

0 0 0 0 0 0 36
5 θR 0 0 0 0 0 0

0 0 0 0 0 0 0 65θR 0 0 0 0 0
0 0 0 0 0 ρR 0 1 0 0 θR 0 0
0 0 0 0 0 0 2

5 0 0 0 0 0 1
0 0 0 0 0 0 0 - 415θR 0 0 0 23θR 0




(41)
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where the different blocks are indicated by solid lines. The right hand side of the system reads
P(U) = − pR

µR

( −µRpR F, σ, 2
3qx, mxyy , Rxy ,

0, 23qy, σyy , Ryy , myyy , 0, σxx, mxxy
)T . (42)

Comparison of the first and second diagonal block in (41) shows the identical structure of the
velocity and temperature parts. Both parts are governed dominantly by two classical variables,
(vx, σ) and (θ, qy), respectively, which behave essentially in an intuitive way. In NSF the second
variable is related to the gradient of the first. The third variable in both parts, qx and σyy,
respectively, is given by a seemingly classical variable which however plays an non-intuitive role.
It represents a heat flux produced by a velocity shear and a normal stress due to temperature
difference. Both are typical bulk effects in rarefied flows only triggered by boundary conditions.
Through these variables the classical variables are coupled to the high order internal quantities,
mxyy and R̂xy, and, R̂yy and myyy , respectively. From tensorial considerations the first block
can be identified with mixed normal/tangential variables, while the second block couples the
purely normal variables. The last block combines the density and purely tangential tensorial
variables.
The matrix A has an eigenvalue λ = 0 with multiplicity α = 2 and two corresponding left

eigenvectors
x1 =

(16
15pR, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
(43)

x2 =
(
0, 0, 0, 0, 0, 365 θR, 0, 0,−1, 0, 0, 0, 0

)
(44)

which satisfy x1,2 ·A = 0. These eigenvectors induce conditions on the variables which are given
by

x1 ·P(U) = 0 ⇒ mxyy = 16
15µRF , (45)

x2 ·P(U) = 0 ⇒ R̂yy = 0 . (46)
These relations affect the velocity part through mxyy and the temperature part through R̂yy.
Both quantities can be inserted into the balance equations for σ and qy , respectively, and here-
after be dropped from the variable vector. As a result, the fourth and ninth row and column
of the matrix (41) can be dropped, as well as the fourth and ninth entry of P(U). The new
system consists of two decoupled 4 × 4 blocks for the velocity and temperature parts, and the
remaining three equations for density and σxx/mxxy [32].
4.2 Boundary Conditions
For the linear case, the boundary condition (33)-(37) must be linearized as well, so that all
terms non-linear in slip velocity V and temperature jump θ− θW vanish. Factors depending on
density, temperature and pressure are replaced by their reference values (39).
After elimination of mxyy and Ryy the system fits seamlessly to the boundary conditions.

The velocity part requires 4 boundary conditions and these are given by (33) and (34) on both
sides of the channel. Similarly, for the temperature part (35) and (36) are used. Note, that the
decoupling of the boundary conditions perfectly mimics the decoupling of the equations in the
linear case.
The last two equations of the linear system, which involve σxx and mxxy, can be solved after

the temperature part for diagnostic purposes. These equations need two boundary conditions,
which are given by (37) on both sides of the channel. Finally, the density can be computed by
integrating the momentum balance for vy and condition (38).

12
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4.3 Velocity Part
As a reference we give the explicit equations for the velocity part in the linearized case. The
variables are U = {vx, σ, qx,Rxy} and the system reads


0 1ρR 0 0
pR 0 25 0
0 θR 0 1

20 0 12
5 θR 0







∂yvx
∂yσ
∂yqx
∂yRxy


 =




F− pRµR σ−23
pRµR qx− pRµRRxy


 (47)

while the boundary conditions on the lower and upper wall, index (0, 1), are given by
σ|0,1 = ±√ 2

πθR
χ

2− χ
(

pR (vx − vw) + 8
15µRF + 1

5qx
)∣∣∣∣0,1 , (48)

Rxy|0,1 = ±
√2θR

π
χ

2− χ
(−pR (vx − vw) + 8

15µRF + 11
5 qx

)∣∣∣∣0,1 . (49)
The general analytical solution is easy to obtain but rather lengthy to write down. Thus, we
omit it here, see [32] for special cases.

5 Nonlinear Case
When studying the non-linear case we consider first the force-less situation

F = 0. (50)
The force will be added in Sec. 5.3. We tackle the non-linearity in two steps, first with the
restriction of linear constitutive equations for mijk and Rij , and after this fully non-linear.

5.1 Semi-Nonlinear
In this section the balance equations of momentum, energy, stress and heat flux are considered
fully non-linear, while only the leading linear expression is kept in the constitutive equation
(21)-(25). First, we simplify the balance equations for qx and qy by adding (14) times σρθ to (19)
and (14) times σyy

ρ θ to (20). This eliminates the occurrence of the density gradient.
We start with the full variable vector (40); the system A(U)∂yU = P (U) is now built from

matrix and right hand side given by
A (U) = (51)



0 1
ρ 0 0 0 0 0 0 0 0 0 0 0

p + σyy 0 25 1 0 0 0 0 0 0 0 0 0
75qy+mxxy θ−σxxρ 0 0 12 72σ 0 0 0 0 0 0 0

0 16
15θ 0 0 0 0 0 0 0 0 0 0 0

0 0 125 θ 0 0 0 0 0 0 0 0 0 0
σ 0 0 0 0 0 1 0 0 0 0 0 0

2
5qx+mxyy −σ

ρ 0 0 0 5
2p+7

2σyy 0 θ 1
2 0 0 0 0

0 0 0 0 0 0 6
5 0 0 1 0 0 0

0 0 0 0 0 0 365 θ 0 0 0 0 0 0
0 0 0 0 0 0 0 6

5θ 0 0 0 0 0
0 0 0 0 0 ρ 0 1 0 0 θ 0 0
2σ 0 0 0 0 0 25 0 0 0 0 0 1
0 0 0 0 0 0 0 − 4

15θ 0 0 0 2
3θ 0
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and

P(U) = − p
µ
( 0, σ, 2

3qx, mxyy , R̂xy,
0, 23qy, σyy , R̂yy , myyy , 0, σxx, mxxy

)T . (52)
The solid lines indicate the blocks known from the linear case. However, now there appear
non-linear coupling terms and the velocity and temperature parts can no longer be solved inde-
pendently. The major coupling is introduced through the dissipation term σ∂yvx in the energy
equation (15). Further coupling is present in the balance equation for heat flux. Some non-linear
contributions also enter the diagonal blocks themselves.
We proceed to eliminate some variables analogously to the linear case. The matrix A(U)

again has the eigenvalue λ = 0 with multiplicity α = 2, however, the eigenspace is only one-
dimensional. We find

x1 =
(16
15p, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
(53)

satisfying x1 ·A(U) = 0. Evaluating this on the system we obtain
x1 ·P (U) = 0 ⇒ mxyy = 0 (54)

in agreement with the linear case and F = 0. This allows to eliminate mxyy and drop the
fourth row and column in A(U). This new reduced matrix still has an zero eigenvalue and a
left-nullspace

x2 =
(
0,−σ, 0, 16

σ
θ , p + σyy, 0, 0,− 5

36
p + σyy

θ , 0, 0, 0, 0
)

(55)
which can be used to calculate an expression for Ryy

x2 ·P (U) = 0 ⇒ Ryy = 6
5σRxy − 6θ σ

p + σyy
. (56)

Note, that this is a fully non-linear statement and it reduces to Ryy = 0, when in the linear case
(46). Hence, the linear case is included.
The expression (56) can be used to eliminate Ryy from the equations and drop the ninth row

and column from the matrix (51). The final system requires 11 boundary conditions given by
the kinetic relations (33)-(37) on both sides of the channel and mass conservation (38) like in
the linear case.

5.2 Nonlinear
As soon as any of the non-linear contributions of the constitutive equations (21)-(25) are included
in the matrix A(U) its determinant becomes non-zero. In principle, this makes 13 boundary
condition necessary. However, according to our hypothesis we reformulate the system such that
as many boundary conditions are required as in the linear and semi-non-linear case.
To be precise, the equations (21)-(25) for {mxxy ,myyy,mxyy ,Rxy ,Ryy} need to be altered

and all non-linear terms recast into algebraic form. These algebraic terms then move to the
right hand side of the system into P(U), while the matrix A(U) will be the same as in (51).
This transformation is possible since the change produces a system that still is of fourth order
asymptotic accuracy.
As a first step we eliminate the density gradient from the equations for mijk and Rij (21)-

(25) by use of the momentum balance (14) θ
ρ ∂yρ = −∂yθ − 1

ρ∂yσyy . Temperature and velocity
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gradients can be substituted by heat flux and stress
µ∂yθ = − 4

15q(NSF)y = − 4
15qy +O (Kn2) , (57)

µ∂yvx = −σ(NSF) = −σ +O (Kn2) , (58)
which introduces an asymptotic accuracy error of O(Kn2). However, these expressions are
multiplied in the equations (21)-(25) by stress and heat flux, both first order quantities, thus
the overall error to mijk and Rij is O(Kn3). This is sufficient for an asymptotically equivalent
system, see Sec. 3.5.2. The remaining gradients of the normal stress σyy are of the form

µ
ρ

σyy
p ∂yσyy = O (Kn3) (59)

and may be dropped entirely without changing accuracy. Thus, the final equations which replace
(21)-(25) are given by

− p
µ
(

mxxy + 8
225p(2σyyqy − 5 σxxqy − 12σqx)

)
= 2

3θ ∂yσxx − 4
15θ ∂yσyy (60)

− p
µ
(

myyy − 8
25p(σyy qy − σ qx)

)
= 6

5θ ∂yσyy (61)

− p
µ
(

mxyy − 32
45pσ qy

)
= 16

15θ ∂yσ (62)
for mijk and

− p
µ
(

R̂xy − 32
25pqxqy − 12

7ρ(σxx + σyy)σ
)

= 12
5 θ ∂yqx (63)

− p
µ
(

R̂yy − 136
25pqyqy − 36

7ρσ2
)

= 36
5 θ ∂yqy (64)

for Rij . We note, that this transformation can also be performed on the full three-dimensional
equations, as well as with the variants of R13 given in [26]. Note, that the steady energy balance
is needed to eliminate density gradients. The influence of this fact needs to be studied in future.
The new algebraic terms change the right hand side of our system to
P(U) = −p

µ
(

0, σ, 2
3qx, mxyy − 32

45
σ qy
p , R̂xy − 32

25
qxqy
p − 12

7
(σxx+σyy)σ

ρ ,
0, 2

3qy, σyy , R̂yy − 136
25

q2y
p − 36

7
σ2
ρ , myyy − 8

25
σyy qy−σ qx

p ,
0, σxx, mxxy + 8225

2σyyqy−5 σxxqy−12σqx
p

)T (65)
while the matrix A is still given by (51). Hence, the null-space vector x1 is still the same, but
now we find

x1 ·P (U) = 0 ⇒ mxyy = 32
45

σ qy
p (66)

which shows a non-linear relation for mxyy . Introducing this relation for mxyy into the balance
equation for σ (18)we obtain

(p + σyy)∂yvx + 2
5∂yqx + 32

45
qy
p ∂yσ + 32

45
σ
p ∂yqy = − p

µσ. (67)
The expression containing the pressure gradient σ qy∂yp = −σqy∂yσyy (momentum balance) is
of third order in Kn and is neglected in the above equation for σ. Using this modified balance
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equation for σ the variable mxyy drops out of the system and, as before, the fourth row and
column of the matrix can be deleted.
However, the new terms from the balance equation for σ change the resulting new matrix.

Interestingly, we still find a null-space spanned by the vector

x2 =
(32
45

qyσ
θ ,−σ, 0, σ

6θ, p + σyy + 32
45

σ2
p , 0, 0,− 5

36
p + σyy

θ , 0, 0, 0, 0
)

(68)

where expressions of third and higher order have been suppressed already. This null-vector yields
x2 ·P (U) = 0 ⇒ R̂yy = 136

25pq2y − 72
35ρσ2 (69)

as expression for R̂yy up to third order. Finally, we insert Ryy into the balance of qy

θ∂yσyy +(52p+ 7
2σyy − 36

35
σ2
p )∂yθ− 107

35
σ
ρ∂yσ + 136

25
qy
p ∂yqy +(mxyy + 2

5qx)∂yvx = − 2p
3µqy (70)

and R̂yy is eliminated from the system.
With the equations (67) and (70), and withoutmxyy and R̂yy , the final fully non-linear system

A(U)∂xU = P(U) is shown in Appendix A in (93) including the force F , see below. It is an
11×11 system which is complemented with the five boundary conditions (33)-(37) on both sides
of the channel and the mass conservation (38).

5.3 With Force F �= 0
We quickly consider the situation with external force

F �= 0 , (71)
which was left out for simplicity above. The existence of a force changes the expression

x1 ·P (U) = 0 ⇒ mxyy = 32
45pσ qy − 16

15µF (72)
for mxyy . In contrast to the linear case, in this situation the term µF gives a contribution when
mxyy is inserted the balance equation of σ. Since the viscosity is temperature-dependent (10)
we obtain a temperature gradient in (67). This term again spoils the existence of a null-space
to further reduce the system. Hence, we eliminate the gradient similar to the procedure before
using ∂yµ = ωµ

θ ∂yθ = −ω 415θqy +O (Kn2) and arrive at
(p + σyy)∂yvx + 2

5∂yqx + 32
45

qy
p ∂yσ + 32

45
σ
p∂yqy = −p

µσ − 64ω
225θF qy (73)

as equation for σ. Here, the term with F is algebraic and moves to the right hand side. At this
point we may continue to evaluate the null-space given by x2 as above and eliminate R̂yy .
Note, that the substitution of the temperature gradient is only possible if the force is small.

Otherwise the change would not be third order in the Knudsen number. To be precise, in
dimensionless form we need F L/θR ≈ Kn.

5.4 Interpretation
The major achievement of the calculations above are not the modified equations, but the dis-
covery of the relations (69) and (72) inherently coupling the moment variables. These relations
have a deeper meaning which becomes clear when studying larger moment systems.
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5.4.1 Boundary Layer Reduction
In an infinite hierarchy applied to a boundary value problem all moment variables will exhibit
boundary layers governed by the Knudsen number, except the two fluxes of the conservation
variables, i.e., shear stress σ and heat flux qy. Each boundary layer is formed from two moment
variables, a variable of even degree in y and small tensor degree and a variable of higher tensor
degree with odd degree. For the odd variable the kinetic boundary condition will furnish wall
conditions on both sides which fixes the amplitude of the boundary layer. Away from the bound-
ary the layer decays to the non-linear bulk solution determined by terms of lower differential
order in the equations. Interestingly, it seems that wherever a moment hierarchy is cut to obtain
a finite system, there will always be some pairs of boundary layer variables that are separated.
The lower variable is included while the higher variable is not considered. Also, since the higher
variable drops out, the kinetic boundary condition is dismissed as well. We obtain a system in
which even variables lack their partner and their boundary condition to produce a boundary
layer. The modelling assumption is, that their boundary layer is somewhat thinner than the
others and can be omitted. Still, due to lower order differential terms in the equations, these
variables require some boundary conditions. Naturally, these variables are assumed to follow
their bulk solution in the entire domain, hence also at the boundary.
In the case of R13 the even variables mxyy and R̂yy are missing a partner of higher tensor

degree to produce a boundary layer. The other variables, e.g., qx with R̂xy and σyy with myyy
form boundary layer pairs. The null space procedure described above provides a method to
obtain the bulk solutions for the left over even variables. The bulk solutions are simply zero in
the linear case, but have non-trivial non-linear contributions in general.

5.4.2 Other theories
The linearized original Grad 13 moment equations do not exhibit Knudsen layers, since the
higher moments lack their partner. The requirement of consistency for boundary conditions
for the linearized and non-linear equations leads directly to the statement that the non-linear
bulk solutions of [30] together with jump and slip boundary conditions for temperature and
velocity are the appropriate system to consider for 2nd order accuracy in the Knudsen number.
Indeed, attempts to prescribe additional boundary conditions were not successful, and only lead
to spurious non-linear boundary layers [34].
Similar problems are encounterd by Gu and Emerson [12] who for the solution of the R13

equations prescribed a large number of kinetic boundary conditions on both walls. While they
obey Grad’s rule of chosing boundary conditons only for odd fluxes (see Sec. 3.4.2), they consid-
ered boundary conditions for higher fluxes that do not appear in the R13 equations. They solved
only the non-linear equations, and their solutions show non-physical boundary layers close to
the wall not observed in solutions of the Boltzmann equation. These must be attributed to the
fact that they prescribe more boundary conditions than are required mathematically: The fully
non-linear R13 equations for shear flow (26) require at most 13 boundary conditions, Gu and
Emerson, however, prescribe more than 13 boundary conditions. Thus their problem is overde-
termined, and they can produce results only by very careful adjustments of the accommodation
coefficients.

6 Numerical Method
6.1 Shear Flow Setting
We consider the one-dimensional domain y ∈ [−L/2, L/2] as depicted in Fig. 1. The simulation
results in this paper are based on a numerical method formulated for the transformed system (93)
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in a straightforward way. This system is 11× 11 with non-singular matrix and is complemented
with the boundary conditions (33)-(37) at y = −L/2 and at y = L/2, as well as the total mass
conservation (38). The discretization is given by n point values

Ui = U (yi) , yi = −L/2 + i∆y, ∆y = L
n + 1 (74)

such that y0 and yn+1 are the boundary points. The values U0 and Un+1 will be first ex-
trapolated from the interior, and some of them are then replaced by means of the boundary
conditions.
As further reduction, the density is separated from the system and we consider it to be a

system of non-linear equations for
U = {vx, σ, qx,Rxy, θ, qy, σyy ,myyy , σxx,mxxy} , (75)

which will be solved by iterative solutions of linear systems. The density appears in the matrix
and on the right hand side as a parameter and has to be recomputed in each iteration from the
integrated momentum balance

ρ = P0 − σyy
θ (76)

where the constant P0 follows from the mass conservation (38). We usedM0 = 1 and trapezoidal
rule to compute P0 from the current values θ and σyy within each iteration.
The right hand side P(U) is split into a matrix operation and the inhomogeneous part in the

form
P (U) = −P̃ (U)U+Pinh (77)

where P̃ (U) and Pinh are given in Appendix B in (95)/(96). The inhomogeneous part contains
only the external force. With this, the system A(U)∂yU = P(U) is discretized using central
differences

1
2∆y

(
A(U(k)

i )U(k+1)
i+1 −A(U(k)

i )U(k+1)
i−1

)
+ P̃(U(k)

i )U(k+1)
i = Pinh 1 ≤ i ≤ n (78)

at all interior points. The superscripts (k) indicates the iterations. The boundary conditions
have to be built into the boundary values U0 and Un+1. First, all values are constructed from
the interior points

U0 = 2U1 −U2, Un+1 = 2Un −Un−1 (79)
using linear extrapolation. The boundary conditions are incorporated based on these values.
We rewrite the boundary conditions (33)-(37) for the entire variable vector in the form

U = B(U)U+Binh,p(U) (80)
where B(U) and Binh,p(U) can be found in Appendix B in (98)/(99). The inhomogeneous part
Binh,p (U) with p ∈ {0, 1} contains the wall values θ(0,1)W and v(0,1)W , as well as the non-linear ex-
pressions of slip velocity and temperature jump. In (80) only the rows for {σ,Rxy, qy ,myyy ,mxxy}
give boundary conditions, while the rows for {vx, qx, θ, σyy , σxx} give identities. Relation (80) is
now evaluated on the extrapolated values (79) and inserted into (78). We obtain for i = 1

1
2∆yA(U(k)

1 )
(
I+B(U(k)

1 )
)
U(k+1)

2 +
(
P̃(U(k)

1 )− 1
∆yA(U(k)

1 )B(U(k)
1 )

)
U(k+1)

1 =

Pinh + 1
2∆yA(U(k)

1 )Binh,0(U(k)
1 ) (81)
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Figure 3: Empirical convergence of the proposed numerical method. Velocity
of the linear R13 equations compared with exact solution for different grids
and Knudsen numbers.

and for i = n
− 1

2∆yA(U(k)n )
(
I+B∗(U(k)n )

)
U(k+1)

n−1 +
(
P̃(U(k)n ) + 1

∆yA(U(k)n )B∗(U(k)n )
)
U(k+1)n =

Pinh − 1
2∆yA(U(k)n )B∗

inh,1(U(k)n ) (82)
as replacement for (78). For simplicity we use U1 and Un in the evaluation of B instead of U0
and Un+1 with no serious loss of accuracy.
The form (80) is valid for the left wall. When using it for the right wall sign changes occur

in the variables indicated by B∗ and B∗
inh,1. The functions for the right wall are given by

B∗(U) = QB (U)Q, B∗
inh,1(U) = QBinh,1 (U) . (83)

with the use of the transformation matrix Q = diag (1,−1, 1,−1, 1,−1, 1,−1, 1,−1).
Combining all discrete values X(k) = {U (k)

i }1≤i≤n we obtain a system in the form
A(

X(k)) ·X(k+1) = Y
(
X(k)) (84)

with some block matrix A (X) which is solved iteratively. As start value X(0) of the iteration
we choose a reference equilibrium. Hence, the linear R13-system is solved in the first iteration.
The stopping criteria is chosen to be∥∥∥X(k+1) −X(k)∥∥∥ ≤ tol (85)
in some L1-type norm. The whole procedure was implemented and used in the algebra-software
Mathematica.
In the linear case, the exact solution of the R13 equations is easily obtained, see Sec. 4.3.

Based on the exact solution an empirical study of the convergence order of the numerical method
shows clear second order of the numerical error. Bigger Knudsen numbers show smaller errors.
Note, that in this case non-linear iterations were not conducted. In the non-linear case, the
numerical method requires 3-5 iterations for convergence.
6.2 General Setting
The above numerical method was tailored for the transformed system (93) with non-singular
matrix. The variablesmxyy , R̂yy and ρ have explicitly been eliminated which resulted in a stable
solution.
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In more general settings we have to deal with fully two-dimensional and/or unsteady situa-
tions where the elimination would not be possible. While the details have not been examined
yet, we propose to use the internal relations

R̂yy = 136
25pq2y − 72

35ρσ2 (86)
mxyy = 32

45pσ qy − 16
15µF (87)

obtained from the null-space conditions as boundary conditions in addition to the kinetic re-
lations (33)-(37). Furthermore, the mass conservation condition (38) can be substituted with
vy = 0 on the boundary if the velocity vy is considered part of the variable set.
The implementation and investigation of this approach in a general setting is left for future

work.

7 Results
In this section we will discuss the results obtained with the new method for channel flows
and compare some of these to values obtained from Direct-Simulation-Monte-Carlo (DSMC)
methods and direct solutions of the Boltzmann equation. In these calculations we use different
modified accommodation coefficients β̃i = χi2−χi =

√
πθ2 βi, see (97) and (100) in the appendix,

for each moment boundary condition in order to match the DSMC and Boltzmann results. We
also allow these coefficients to vary with Knudsen number, see Table 1, such that an overall
agreement with DSMC is achieved. The influence and relevance of these coefficients is discussed
in Sec. 7.3 below.
The computational domain y ∈ [−0.5, 0.5] was discretized with N = 200 points.

7.1 Poiseuille Flow
Poiseuille flow is given by acceleration-driven channel flow with walls at rest. The channel is
considered to be infinitely long such that a full velocity profile has developed from the viscous
boundary layers. The given acceleration can be interpreted as a homogeneous pressure gradient.
We solve the R13-system in the form (93) with kinetic boundary conditions (97) and v(0,1)W =

0, θ(0,1)W = 1 for various Knudsen numbers with a dimensionless acceleration force fixed at
F = 0.23 and viscosity exponent ω = 0.5. These values are chosen such that a Knudsen number
Kn = 0.068 reproduces the case of Poiseuille flow calculated in [40] (see also [39]) by DSMC.
We also calculate the cases Kn = 0.15, 0.4, 1.0.
Fig. 4 displays the results for all Knudsen numbers together with the DSMC solution for

Kn = 0.068. A good match with the DSMC result is obtained with accommodation coefficients
given in Table 1. The figure shows the conservation variables velocity and temperature, their
fluxes stress σ and heat flux qy , as well as the rarefaction variables tangential heat flux qx and
normal stress σyy. All variables are reproduced as smooth curves without any tendencies to
oscillate even when the grid is refined. Higher Knudsen numbers show stronger non-equilibrium
as indicated by larger magnitudes of qx and σyy . Interestingly, the temperature profile starts to
invert for higher Knudsen numbers. This has still to be confirmed by DSMC calculations.
The rarefied flow through a channel is known to exhibit a paradoxical behavior known as

Knudsen paradoxon, [15]. When reducing the Knudsen number in the experiment the normalized
mass flow rate

J =
∫ 1/2

−1/2
v(y)dy (88)

20



Torrilhon and Struchtrup

Figure 4: Accelaration-driven channel flow with dimensionless force F = 0.23
for different Knudsen numbersKn = 0.068, 0.15, 0.4, 1.0. The result for Kn =
0.068 is compared to the DSMC results of [40] (symbols).

Figure5: Normalized mass flux through channel in the acceleration-driven case
as a function of Knudsen number. Comparison between direct linear Boltzmann
solution (symbols), R13 with new boundary model and Navier-Stokes-Fourier.

through the channel reaches a minimum and afterwards starts to increase for larger Knudsen
numbers. Intuitively one would expect a decreasing mass flow for a smaller channel, but at a
certain scale the friction inside the gas becomes so small that the growing slip velocity at the
wall dominates the mass flow. This can also be observed in the results of the R13-system in
Fig. 4. The velocity profile becomes flatter, but the slip increases and the velocity curve for
Kn = 1.0 lies above the curve of Kn = 0.4.
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flow type Kn-number β̃1 β̃2 β̃3 β̃4 β̃5
Poiseuille 0.068 0.9 0.35 0.9 0.5 1.0

0.1 0.9 0.4 0.92 0.6 1.0
Couette 0.25 0.92 0.6 1.05 0.6 1.0

0.5 1.05 0.8 1.35 0.7 1.0

Table 1: Modified accommodation coefficients β̃i used in the different simu-
lations of Poiseuille and Couette flows with R13. These values give relatively
good matching with DSMC data. The influence of the accommodation coeffi-
cients is discussed in Sec. 7.3.

Figure 6: Symmetric shear flow (Couette flow) between two plates (left and
right) at Kn = 0.1 for two different velocities of the walls. Comparison of R13
(lines) with DSMC (symbols).

In [22] the mass flow rate has been calculated based on the linearized Boltzmann equation.
After correctly scaling the Knudsen number and the mass flow we compare the mass flow of
the R13 results with those of [22] and Navier-Stokes-Fourier in Fig. 5. The classical theory of
Navier-Stokes-Fourier fails to describe the Knudsen minimum. The mass flow for R13 follows
the Boltzmann result fairly accurate until Kn � 1.0 and then lifts off too quickly. At these
high Knudsen numbers the assumptions of the theory are not valid anymore. However, at lower
Knudsen numbers the R13 systems demonstrates its ability to simulate micro-flows efficiently
and accurately.
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Figure 7: Symmetric shear flow (Couette flow) between two plates (left and
right) at Kn = 0.25 for two different velocities of the walls. Comparison of
R13 (lines) with DSMC (symbols).

7.2 Couette Flow
Typically, a channel flow where one wall is kept at rest while the other is moving is referred to
as plane Couette flow. For symmetry reasons this setting corresponds to a channel flow where
both walls move in opposite directions with identical speeds. Again, we solve the R13-system
in the form (93) with kinetic boundary conditions (97). We choose v(0)W = −v(1)W and θ(0,1)W = 1
with two different choices for the dimensionless upper wall velocity v(1)W = 0.63 and v(1)W = 1.26.
The Knudsen numbers considered are Kn = 0.1, 0.25, 0.5. For all these cases we compare with
DSMC results produced in [34]. The viscosity exponent is ω = 1.0.
For each Knudsen number the accommodation coefficients have been slightly modified for

a good agreement according to Table 1. However, the same boundary conditions, and thus
the same accommodation coefficients, have been used for different velocity cases. Interestingly,
higher Knudsen numbers require slightly higher accommodation coefficients.
The simulation results for Kn = 0.1, 0.25, 0.5 are shown in Fig. 6, 7 and 8, respectively. As

before, we show the variables velocity and temperature with their fluxes stress σ and heat flux
qy and the rarefaction variables tangential heat flux qx, and normal stress σyy . Both for higher
velocities and higher Knudsen numbers the agreement between R13 and DSMC is weaker, but
still acceptable, especially so for velocity and temperature. There might be a systematic error
in the normal stress σyy since it shows a consistently larger error than the other fields.
We emphasize that our theory of boundary conditions leads to a smooth transition between

linear and non-linear settings, and that only as many boundary conditions are prescribed as
mathematically required. In particular this guarantees that conservation of energy and momen-
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Figure 8: Symmetric shear flow (Couette flow) between two plates (left and
right) at Kn = 0.5 for two different velocities of the walls. Comparison of R13
(lines) with DSMC (symbols).

tum is fulfilled for all values of the individual accommodation coefficients βi, and that no spurious
non-linear boundary layers appear. These features distinguish the present theory of boundary
conditions from earlier attempts, e.g., [12], [34], where the prescription of too many bound-
ary conditions lead to problems with conservation laws, and to spurious (non-linear) boundary
layers.

7.3 Discussion of Accommodation Coefficients
Most simulations based on DSMC or direct Boltzmann solvers use the accommadation model
(28) as boundary condition for the distribution function. However, the reduction of this model
to boundary conditions for continuum equations has to be handled with caution. Already in the
case of NSF it is known that the slip and jump boundary conditions have to be modified with
artificial coefficients, see [7] or [26]. The reason for this correction is the lack of Knudsen layers
in NSF. Similarly, the R13 equations are not able to describe the Knudsen layer completely due
to the lack of sub layer contributions from higher moments, see [27] and Fig. 2. Hence, we expect
the boundary conditions to be modified. The natural choice suggested by the structure of the
equations (33)-(37) is to use different accommodation coefficients χi for different moments, i.e.,
fluxes. This was already suggested by Grad in [11]. To some extend, this modification can also
be viewed as generalization of the kinetic accommodation model, since one single parameter χ
is certainly not enough to describe a general wall.
The physical and mathematical derivation of different accommodation coefficients remains

open. A first hint is given in [32] where a phenomenological model of the wall lead to boundary
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Figure 9: Comparison of the result for Poiseuille flow at Kn = 0.068 with
different setting of the modified accommodation coefficients β̃i. The values β̃T1
are given in Table 1, while the result with β̃ = 1 sets all β̃i to unity.

conditions structurally equivalent to (33)-(37) but with general positive coefficients in place of
χ/(2 − χ) = β̃. This result encourages us to modify β̃i in a more general way and also allow
β̃i > 1 in order to reproduce the DSMC result. Of course, the final theory should provide values
for β̃i with minimal fitting and should by applicable in the general setting. This theory is out of
scope of this paper. Here, we only give values for β̃i that produce good agreement and discuss
the general influence of β̃i on the result.
If we restrict our focus to the fundamental shear flow variables {vx, σ, qx, θ, qy , σyy} the quali-

tative influence of the β̃i on the solution is surprisingly simple. The temperature jump coefficient
β̃3 influences only the temperature profile and has little to no effect on the rest of the variables.
The profile is shifted upwards if β̃3 is reduced and vice versa. The slip coefficient β̃1 shifts the
profiles of velocity and temperature simultaneously. If β̃1 is decreasing the velocity profile is
shifted upwards, while the temperature goes downwards. The coefficients β2,4 are jump coeffi-
cients for the parallel heat flux and the normal stress, and both coefficients act independently on
their variable. If increased, they increase the amplitude of the Knudsen layer of the respective
variable.
This describes only the rough initial behaviour in an environment of β̃i = 1. Since the

boundary conditions are fully coupled an influence of each β̃i can in principle be detected in
every other variable.
We present two figures in which the quantitative difference in the solution can be studied

when the β̃i are changing. The results found with the values for β̃i given in Table 1 are compared
with the case β̃i = 1. Fig. 9 shows the case of Poiseuille flow at Kn = 0.068. From the values
in Table 1 to β̃i = 1 all values have been increased. The figure does not show shear stress and
normal heat flux, since the solution curves exhibit virtually no differences. Most pronounced is
the overestimation of the amplitude of the Knudsen layer in qx and σyy due to the increase of
β̃2,4. Also, β̃3 = 1 gives a too low temperature. However, overall, the model shows a very stable
behaviour.
Fig. 10 show the case of Couette flow at Kn = 0.5 and vW = 0.63. Again, the case β̃i = 1 is

compared to the result based on the values in Table 1. As above, the normal heat flux shows no
difference, but this time the shear stress deviates more than the velocity profile, so the figure
shows shear stress, temperature, parallel heat flux and normal stress. The values of βi in Table
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Figure 10: Comparison of the result for Couette flow at Kn = 0.5 and vW =
0.63 with different setting of the modified accommodation coefficients β̃i. The
values β̃T1 are given in Table 1, while the result with β̃ = 1 sets all β̃i to unity.

1 have been chosen such that the temperature profile is matched and qx exhibits the correct
slope in the middle. Clearly, there is a trade-off between shear stress and temperature and also
the normal stress. The case Kn = 0.5 with vW = 0.63 is a severe test and it is no surprise that
difficulties arise. For a better judgement also comparisons to other DSMC data or Boltzmann
solutions should be performed.

8 Conclusion
This paper presented a rigorous approach to boundary conditions for moment equations in
kinetic theory based on mathematical and physical requirements. As basic set of equations
the regularized 13-moment-system (R13) have been considered, while most of the findings can
be generalized to other systems. Shear flow between two walls served as generic model for
micro-flow simulations. We demonstrated that the boundary conditions that follow from kinetic
accommodation models for the odd flux variables (five conditions on the wall for σ, Rxy , qy,
myyy , andmxxy) are sufficient for both the linear and non-linear R13 equations. This agrees with
our hypothesis that the number of boundary conditions should not change when moving from
linear to non-linear equations. However, to achieve this the equations have to be transformed
and the transformed system provides additional internal relations that may be considered as
additional boundary conditions. The transformation was possible by adding expressions that
are of high order in Knudsen number such that the overall asymptotic accuracy with respect
to Boltzmann’s equation does not change. The additional internal relations represent the bulk
solutions of certain moments that fail to produce a boundary layer due to a finite set of variables.
Once the boundary conditions have been found, the formulation of a numerical method was

done in a straight forward way. Various examples for shear flow of Couette- and Poiseuille-type
demonstrate the usefulness of the approach. From a physical point of view, additional modelling
of specific accommodation coefficients is required for more accurate results.
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A Matrix Formulation
A.1 Original System
The system (13)-(25) can be written in matrix form

A (U) ∂yU = P (U) . (89)
Here, we use the special physical grouping of the variable vector

U = {vx, σ, qx,mxyy ,Rxy, θ, qy, σyy ,Ryy ,myyy , ρ, σxx,mxxy} (90)
which is in accordance with the decoupling observed in the linear case (41). The original fully
non-linear system is given by

(91)
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A.2 Transformed System
The transformed system results after eliminating mxyy and R̂yy and keeping the full null-space
as described in Sec. 5.2. The reduced set of variables is given by

U = {vx, σ, qx, Rxy , θ, qy , σyy ,myyy, ρ, σxx,mxxy} (92)

and the system has the form

(93)
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B Numerical Matrices
For use in the numerical method of Sec. 6 the right hand side of the system (93) is written in
the form

P (U) = −P̃ (U)U+Pinh (94)
with the matrix

P̃ (U) = p
µ




0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 23 0 0 0 0 0 0 0
0 −67

σxx+σyy
ρ −1625

qy
p 1 0 −1625

qxp −67 σρ 0 −67 σρ 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 23 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 425

qxp 425 σp 0 0 − 425
σyy
p − 425

qy
p 1 0 0

0 0 0 0 0 0 0 0 1 0
0 − 48

225
qxp − 48

225
σ
p 0 0 8σyy−20 σxx

225p
8

225
qy
p 0 − 4

45
qy
p 1



(95)

and the vector
Pinh =

(
F,− 64ω

225θF qy , 0 ∈ R8) . (96)
Note, that the density has been dropped from the variable vector which now reads U = {vx, σ,
qx, Rxy , θ, qy , σyy, myyy, σxx, mxxy}. Also for incorporation into the numerical method the
boundary conditions (33)-(37) are cast into

U = B(U)U+Binh,p(U) (97)
with the matrix

B (U) =




1 0 0 0 0 0 0 0 0 0−β1P 0 −15β1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

β2θP 0 −115 β2θ 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 −2β3P 0 −1

2β3θ 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 2

5β4P 0 −7
5β4θ 0 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 −β5θ 0




(98)

and the vector
Binh,p (U) =

(
0, β1(P v(p)W + 1

2mxyy), 0, −β2(θ P v(p)W +P V (V 2 − 6∆θ) + 1
2θmxyy),

0, β3(2P θ(p)W + 1
2P V 2 − 5

28R̂yy), 0, −β4(25P θ(p)W + 3
5P V 2 + 1

14R̂yy), 0, β5P V 2
)T

(99)
where p ∈ {0, 1} represents the superscript for the left and right wall. The vector Binh,p contains
the slip velocity V (0,1) = vy − v(0,1)W and the temperature jump ∆θ(0,1) = θ − θ(0,1)W . The
accommodation coefficient is hidden in the parameter

βi =
√ 2

πθ
χi

2− χi
(100)
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where we assumed different accommodation coefficients for all boundary conditions in (33)-(37).
In the original boundary conditions the trace of the fourth moment R was present. It does not
appear as variable in our system, but, instead, would have to be computed from (4). Due to
relatively small numerical coefficients we dropped it in (97) for simplicity.

C Distribution Function
The velocity distribution function for the R13 equations is based on the 26-moment-case of
Grad, see e.g., [26]. In peculiar velocities C = c− v the distribution function reads

fR13 (C) = (1 +ϕ13 (C) + ϕR1 (C) +ϕR2 (C)) fM (C) (101)
with the Maxwell distribution

fM (C) = ρ/m√2πθ3 exp
(−C2

2θ
)

(102)

and correction terms
ϕ13 (C) = 1

θ2p
((qxCx+qyCy

) (C2
5 −θ)+ θ

2
(σxxC2x+σyyC2y+σzzC2z+2σCxCy

)) (103)
ϕR1 (C) = 1

2θ2p
(13mxxxC3x+13myyyC3y+mxxyC2xCy+mxyyCxC2y+mxzzCxC2z+myzzCyC2z

) (104)
ϕR2 (C) = 1

4θ3p
((RxxC2x+RyyC2y+RzzC2z+2RxyCxCy

) (C2
7 −θ)+ R30

(C4−10θC2+15θ2))
(105)

The case ϕR1 = ϕR2 = 0 corresponds to Grad’s 13-moment distribution. In case of R13 the
additional terms involving mijk and Rij are to be evaluated with the constitutive equations
(21)-(25).
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