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In a series of experimental investigations Phillips and co-workers have determined the ‘‘Onsager heat of
transport’’ in a cell with layers of a liquid and its vapor. Their results also include experimental observa-
tion of ‘‘cold to warm distillation’’, that is temperature difference driven mass transfer through the vapor
from a cold to a warm liquid Mills and Phillips [e.g. C.T. Mills, L.F. Phillips, Distillation of a cool liquid onto
a warmer surface, Chem. Phys. Lett. 372 (2002) 615–619]. Using standard irreversible thermodynamics
for evaporation, condensation and transport, we present a theoretical analysis of the experimental
set-up and discuss the reported measurements in terms of layer and interface properties. Necessary
and sufficient criteria for a possible temperature difference driven cold to warm mass transfer are given.
The criteria indicate that the occurrence of this phenomenon is highly unlikely.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In many industrial and natural processes conditions for conver-
sion of liquid to vapor, and vice versa, are of vital importance. In
dynamic studies of phase transitions it has become increasingly
clear that the interfacial region can play a decisive role in
determining the rate of transformation. This paper concerns the
importance of jumps in temperature and chemical potential at a
vapor–liquid interface, in dynamic boundary conditions for trans-
ports through a series of phases. The theory of thermodynamics of
irreversible processes (TIP, [1]) predicts the jumps at the interface
[2] from the excess entropy production. The theory will also set
the overall criteria for the transport processes, as the entropy pro-
duction has to be positive everywhere.

Also kinetic theory predicts discontinuities at the interface
[3–5]. In addition, kinetic theory predicts the Onsager coefficients
of TIP [6–8]. Most kinetic theory models assume a velocity inde-
pendent condensation coefficient, but more refined models for
velocity dependent condensation coefficient are available [9,10].
The refined Onsager coefficients are of the same order of magni-
tude as those for constant condensation coefficients [11].

Recent molecular dynamics (MD) simulations of non-equilib-
rium interfaces have also shown interfacial discontinuities in the
temperature and a difference between the pressure and the vapor
pressure. The resulting Onsager coefficients depend on the inter-
atomic potential used. For short range interatomic potentials, the
ll rights reserved.
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MD simulations agree well with kinetic theory predictions [12].
For long range potentials, the diagonal resistivities are slightly
smaller while the off-diagonal resistivities were larger by a factor
of about three [13].

Measurements of Ward and co-workers on forced evaporation
showed marked temperature jumps at the phase interface
[14–16]. Values for the Onsager coefficients extracted from these
data [17] were between one and two orders of magnitude larger
than the values predicted by kinetic theory. As pointed out by Bond
and Struchtrup [18] the experimental geometry and boundary con-
ditions have a marked influence on the experimental observation.
We refer to their paper for details. A better understanding of the
origin of the difference in magnitude between simulated and
measured coefficients is needed.

In a series of papers Phillips and co-workers [19–22] describe
measurements in a device which they call ‘‘Onsager cell’’, to which
we shall refer as the ‘‘Phillips–Onsager cell’’. In the cell, a liquid–
vapor phase interface with adjacent bulk phases is subjected to a
temperature gradient. The cell pressure is measured as a function
of the temperature difference between an upper and a lower plate,
and the slope of the pressure curve is used to determine the so-
called Onsager heat of transport Q⁄. Phillips and co-workers report
observation of what they call ‘‘cold to warm distillation’’, that is the
transport of matter through the vapor from the colder to the
warmer side of the cell. This surprising result has as yet not be con-
firmed elsewhere.

We shall perform a theoretical analysis of the Phillips–Onsager
cell using thermodynamics of irreversible processes [1,2,23]. We
shall combine a description of the three homogeneous phases in
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the cell, with a description of two interface layers, thereby describ-
ing the heterogeneous system. The analysis will show that the heat
of transport Q⁄ determined by Phillips et al. is a property of all
layers in the whole Phillips–Onsager cell, and not just of the
liquid–vapor interface. In particular it is determined by the interfa-
cial coefficients and the thermal conductivities and thicknesses of
the bulk phases, with the latter being dominant in thicker cells,
and at higher cell pressures. The overall heat of transfer is related
to the interface heat of transfer, q⁄, however.

In Section 2 we describe the geometry of the Phillips–Onsager
cell, and apply the theory to the cell. We shall distinguish between
the case of a wet and a dry upper plate in the cell. Our aim is to
provide a more detailed basis for analysis of these important
experiments, than available so far. Section 3 gives a detailed dis-
cussion and necessary and sufficient criteria for cold to warm mass
transfer. Section 4 focusses on the cell pressure, and heat of trans-
fer for the cell. A short discussion of the expected temperature
profile is presented in Section 5, before the final conclusions are
presented in Section 6.
Fig. 1. Schematic of temperatures Ta and layer thicknesses in the Onsager cell with
dry upper plate (left) and wet upper plate (right). The temperatures TL and TH at
bottom and upper plate are controlled by thermostats, all other temperatures
(Tl,Tv,TV,TD) and the pressure p result from the transport processes within the cell.
2. Thermodynamic model of the Phillips–Onsager cell

2.1. Set-up of the cell

The Phillips–Onsager cells that were used in the experiments
are described in [19,22], and we shall not discuss their geometry
in detail. In principle a cell consists of a chamber of large base area
and relatively low height to ensure that the transport processes in
vertical direction are essentially one-dimensional. The upper and
lower plates that enclose the chamber are carefully thermostatted
by circulating fluids above and below.

The chamber is filled with a substance, e.g. aniline [19] or water
[22], which is carefully cleaned and degassed, so that only pure
substance is in the chamber. Filling amount and temperatures
are such that some of the substance is liquid and the remainder
in the vapor state. In other experiments the cell was filled with
mixtures, but this is outside the scope of our present consideration.

Typically, for an experimental run the temperature TL of the
bottom plate is kept constant and the temperature TH of the upper
plate is varied while the cell pressure p is measured. A series of
measurements results in a curve p(TH), with TL as parameter. From
that measurement Phillips and co-workers determine their heat of
transport as (in dimensionless form)

Q � ¼ � TL

psatðTLÞ
dpðTHÞ

dTH
: ð1Þ

In the cited papers, pressure is typically plotted over the tempera-
ture difference (TH � TL), which corresponds to a simple shift in
the temperature scale.

For the full thermodynamic evaluation of the cell, we need to
resolve the temperature field within the cell, which we will con-
sider as a simple 1-dimensional system. Fig. 1 shows a schematic
of the temperatures and layer thicknesses in the cell. In part of
the experiments liquid droplets are observed at the upper plate
as a result of condensation. Therefore we have to consider two dif-
ferent configurations, one with wet upper plate, the other with dry
upper plate.

For the cell with wet upper plate (right), we have highlighted
the temperatures TL and TH of the cell walls as well as the temper-
atures Tl and Tv of liquid and vapor directly at the lower phase
boundary, and the temperatures TV and TD of vapor and liquid
directly at the upper phase boundary. The liquid directly at the bot-
tom and upper plates assumes the temperatures of the plates. The
lower liquid layer has thickness xL, the vapor layer has thickness xV,
and the upper liquid layer has thickness D, which is typically much
less than xL. To simplify the treatment, we shall consider only a
fully wetted upper plate in our calculations.

For the cell with dry upper plate (left), we have highlighted the
temperatures TL and TH as well as the temperatures Tl and Tv of
liquid and vapor directly at the phase boundary, and the tempera-
ture TV of the vapor in front of the upper plate. For low vapor pres-
sures a temperature jump between vapor and wall can exist, so
that TV – TH. The liquid at the bottom plate, however, assumes
the temperature of the plate, TL. The liquid layer has thickness xL

and the vapor layer has thickness xV.
To simplify the discussion of Phillips’ experiments, we model

the vapor as an ideal gas, and the liquid as an incompressible ideal
liquid, and we shall assume constant thermal conductivities
throughout. These assumptions are well justified at the low pres-
sures in the experiments, and the rather small temperature differ-
ences employed. In particular, to mimic the experiments, we shall
consider data for water and aniline. For water, we use the model-
ling and data employed in [18], for aniline we use the same
modelling with data from a public database [24].

2.2. Liquid–vapor interface conditions

Irreversible thermodynamics for a liquid vapor phase interface
reveals that transport of mass and heat across the interface follows
the interface conditions [2]

psatðTlÞ�pffiffiffiffiffiffiffiffiffi
2pRTl

p

psat Tlð Þffiffiffiffiffiffiffiffiffi
2pRTl

p Tl�Tv
Tl

2
64

3
75 ¼ r̂11 r̂12

r̂12 r̂22

� � J
qv
RTl

" #
; ð2Þ

where R is the specific gas constant, Tl and Tv are the temperatures
of liquid and vapor directly at the interface, psat(Tl) is the equilib-
rium saturation pressure at the liquid interface temperature, p is
the actual pressure of the system, J is the mass flux (positive for
evaporation, negative for condensation), and qv is the measurable
heat flux in the vapor, as given by Fourier’s law. The above equation
is written such that the matrix of Onsager resistivities r̂ab is
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dimensionless [11]; this matrix is symmetric and non-negative
definite, so that entropy is produced at the interface.

If one assumes that the vapor behaves as an ideal gas, the
dimensionless coefficients r̂ab are constants with the values [5,2]

r̂ab ¼
1
w� 0:40044 0:126

0:126 0:294

" #
: ð3Þ

Here, w is the constant condensation coefficient, defined as the
probability that a vapor particle hitting the liquid will actually con-
dense. For other substances, where the vapor does not behave as an
ideal gas, the coefficients will assume other values. Molecular
dynamics simulations show that one can expect larger resistivities
for molecules with long range potential, with resistivities larger
by a factor of about three, that is less than one order of magnitude
[13,12,2]. Evaluation of the experiments of Ward and coworkers
[14–16] indicate that the resistivities could be up to two orders of
magnitude above those for the ideal gas [17].

The interface conditions (2) imply that, as soon as mass and/or
heat flux are non-zero, there will be temperature and pressure dif-
ferences between liquid and vapor, whose magnitude depends on
the values of the resistivities r̂ab. In most macroscopic technical
applications of heterogeneous systems the T and p differences are
so small that they can be ignored. However, in smaller systems,
jumps in temperature and pressure might become significant,
and for proper predictions of these, the values of the resistivities
must be known.

In a simple steady state experiment without mass flux, the
interface conditions reduce to

psatðTlÞ�pffiffiffiffiffiffiffiffiffi
2pRTl

p

� psatðTlÞffiffiffiffiffiffiffiffiffi
2pRTl

p Tv�Tl
Tl

2
64

3
75 ¼ r̂12

qv
RTl

r̂22
qv
RTl

" #
; ð4Þ

which can be further reduced by dividing both equations to

� Tl

psatðTlÞ
psatðTlÞ � p

Tv � Tl
¼ r̂12

r̂22
¼ �q�: ð5Þ

This ratio is the dimensionless Onsager heat of transport for the va-
por liquid interface, denoted here by q⁄. Kinetic theory predicts a
value of q� ’ � 0:126

0:294 ¼ �0:43 [5,2], and molecular dynamics simula-
tions give similar values.

This heat of transfer q⁄ is an interfacial property, to be distin-
guished from the Heat of Transport for the entire Phillips–Onsager
cell Q⁄ as considered by Phillips and co-workers (1). As will become
clear in the following, the larger values of Q⁄ observed are due to
the macroscopic nature of the cell. We shall also see how the
two properties can be related, meaning that also q⁄ is accessible
from the type of experiments done by Phillips’ group. Experimental
determinations of q⁄ are important in order to further develop the
understanding of interface transport phenomena.

2.3. Wet upper plate

We consider therefore a detailed modelling of the Phillips–
Onsager cell, beginning with the case where there is a liquid layer
at the upper plate, as shown in the right part of Fig. 1. In this case
the laws of thermodynamics give a solution only for non-zero mass
flux, that is the mass flux can only vanish when there is no temper-
ature gradient. In other words, as long as the wetted upper and
bottom plates have different temperatures, there must be a mass
flux involved, which, as will be seen, normally goes from hot to
cold.

To simplify the calculation, we consider steady state conditions.
This ignores the change of the liquid layer thicknesses xL and D as a
result of evaporation/condensation and transport. Since the mass
flux is very small, and liquid densities are large compared to vapor
densities, this assumption is well justified.

With non-zero mass flux, the 1-D mass and energy balances in
steady state read [23]

dJ
dx
¼ 0;

d _Q
dx
¼ d

dx
½JhðTÞ þ q� ¼ 0; ð6Þ

where J is the mass flux, _Q is the overall energy flux, h(T) is the
enthalpy, and q ¼ �j dT

dx is the measurable heat flux with the ther-
mal conductivity j. These equations are valid in the bulk liquid
and vapor phases, with the appropriate data.

According to (6), mass flux J and overall energy flux _Q are con-
stants. Their values depend on the boundary temperatures TH and
TL, and must be computed from the solution of the equations for
the entire cell.

To proceed, we consider a simple model [18] where the liquid
enthalpy is hf(T) = cf(T � T0) and the vapor enthalpy is hgðTÞ ¼
cpðT � T0Þ þ h0

fg , with the specific heats cf and cp, and the heat of
vaporization at reference temperature T0 denoted as h0

fg . Thermal
conductivities of vapor and liquid will be denoted as jV and jL,
respectively.

Referring the reader for details to [18], we only state the results
for the temperature curves, which we find from integrating (6) as,
in bottom liquid (0,xL):

T ¼ TL þ
_Q

Jcf
�

_Q
Jcf

exp
Jcf

jL
x

� �
; ð7Þ

in vapor (xL,xV):

T ¼ TL þ
_Q

Jcp
�

hL
fg

cp
þ Tv � TL �

_Q
Jcp
þ

hL
fg

cp

 !
exp

Jcpðx� xLÞ
jV

� �
; ð8Þ

in upper liquid (xL + xV,xL + xV + D):

T ¼ TL þ
_Q

Jcf
þ TH � TL �

_Q
Jcf

 !
exp

Jcf

jL
ðx� xL � xV � DÞ

� �
: ð9Þ

In these equations, we have considered the bottom plate tempera-
ture TL as reference temperature (T0 = TL), and we have adjusted to
the temperatures TL (at x = 0), Tv (at x = xL) and TH (at x = xL + xV + D).

Our goal is to determine the temperatures at the various
interfaces, i.e., Tl, Tv, TV, TD, as well as energy flux _Q , mass flux J
and pressure p in dependence of the controlled temperature differ-
ence (TH � TL). To this end we consider the following equations:

(a) The temperature equations (7)–(9) at the points
(xL,xL + xV,xL + xV),
Tl ¼ TL þ
_Q

Jcf
�

_Q
Jcf

exp
Jcf xL

jL

� �
;

TV ¼ TL þ
_Q

Jcp
�

hL
fg

cp
þ Tv � TL �

_Q
Jcp
þ

hL
fg

cp

 !
exp

JcpxV

jV

� �
;

TD ¼ TL þ
_Q

Jcf
þ TH � TL �

_Q
Jcf

 !
exp �

Jcf D

jL

� �
;

ð10Þ
(b) the interface conditions (2) for the lower interface (with
qv ¼ �jV

dT
dx and (8)),
psatðTlÞ � pffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTl
p ¼ r̂11J þ r̂12

�Jcp Tv � TL �
_Q

Jcp
þ hL

fg

cp

� �
RTl

;

� psatðTlÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTl
p Tv � Tl

Tl
¼ r̂12J þ r̂22

�Jcp Tv � TL �
_Q

Jcp
þ hL

fg

cp

� �
RTl

; ð11Þ
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(c) the interface conditions (2) for the upper interface (with
qv ¼ �jV

dT
dx and (8), note inverted signs of fluxes relative to

the interface)
� psatðTDÞ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTD

p ¼ r̂11J þ r̂12

�Jcp TV � TL �
_Q

Jcp
þ hL

fg

cp

� �
RTD

;

psatðTDÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTD

p TV � TD

TD
¼ r̂12J þ r̂22

�Jcp TV � TL �
_Q

Jcp
þ hL

fg

cp

� �
RTD

:

ð12Þ
With the above, we have seven equations for the seven unknowns
fTl; Tv ; TV ; TD; _Q ; J;pg. This non-linear system can be solved on a
computer.

In the experiments with the Phillips–Onsager cell, the overall
temperature difference (TH � TL) is typically small. Accordingly,
we expect small values of all deviations from equilibrium. Thus,
we consider the linearization of the Eqs. (10)–(12) for small
_Q ; J; ðTH � TLÞ. The linearized equations read

Tl � TL ¼ � _Q
xL

jL
;

TV � Tv ¼ JhL
fg

xV

jV
� _Q

xV

jV
;

TD � TH ¼ _Q
D
jL
;

Tl � Tv ¼ TV � TD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p

TL

psatðTLÞ
r̂12 � r̂22

hL
fg

RTL

 !
J þ r̂22

_Q
RTL

" #
;

psatðTlÞ � p ¼ p� psatðTDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL

p
r̂11 � r̂12

hL
fg

RTL

 !
J þ r̂12

_Q
RTL

" #
:

ð13Þ

For full linearization, the saturation pressures at Tl and TD must be
expanded around TL by means of the Clausius–Clapeyron relation,
e.g., as

psatðTlÞ ¼ psatðTLÞ þ
psatðTLÞhL

fg

RT2
L

ðTl � TLÞ: ð14Þ

Here, matching the experimental data, we consider the Clausius–
Clapeyron equation in a form valid rather close to the triple point,
where the vapor can be described as an ideal gas, and the specific
volume of the liquid volume can be ignored against the specific
volume of the vapor. The full Clausius–Clapeyron equation is used
in the more complete argument on cold to warm mass transfer
presented in [25].

The solution of the linear system is cumbersome, but straight-
forward. The overall temperature difference (TH � TL) is the only
driving force of the system, and thus mass and heat fluxes are pro-
portional to that difference. We write

J ¼ � psatðTLÞ
TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p J ðTH � TLÞ; ð15Þ

_Q ¼ � psatðTLÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p QwðTH � TLÞ; ð16Þ

with dimensionless overall transport coefficients for mass and heat
transfer denoted by J and Qw. The signs are chosen such that the
coefficients will be positive for most flows.

For the linearized equations, the dimensionless coefficients are
obtained as

J ¼ A
2C þ DB

; Qw ¼
B

2C þ DB
P 0; ð17Þ

where
A ¼
hL

fg

RTL

1
2

xV

k0
þ r̂22

� �
� r̂12;

B ¼ 1
2

hL
fg

RTL

 !2
xV

k0
þ r̂11r̂22 � r̂12 r̂12

r̂22
þ r̂22

r̂12

r̂22
�

hL
fg

RTL

" #2

P 0;

C ¼ r̂11
1
2

xV

k0
þ r̂11r̂22 � r̂2

12 P 0; D ¼ jV

jL

xL þ D
k0

P 0:

ð18Þ

and

k0 ¼
jV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p

psatðTLÞR
: ð19Þ

Here, k0 is a characteristic microscopic length scale for heat transfer
in the vapor. It is related to the mean free path K0 of the gas as
k0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
4:5p
p cp

R K0; for water k0 is of the order of 34 mean free paths.
The coefficients B, C, D are non negative due to their definitions;

recall that the Onsager matrix is positive definite, which implies
r̂11 P 0; r̂22 P 0; r̂11 r̂22 � r̂12 r̂12 P 0 [2]. Accordingly, in agreement
with the 2nd law, the energy transfer coefficient Qw is non-nega-
tive, heat goes from hot to cold. The sign for J will be discussed
in Section 3.

From the linearized equations we recognize that the tempera-
ture jumps at the phase boundaries, (Tv � Tl) and (TD � TV), are
equal in size, and that the system pressure is the average of the
saturation pressures of the two liquid surfaces,

pðTHÞ ¼
1
2
½psatðTlÞ þ psatðTDÞ�: ð20Þ

In detail, we find the relation between the cell pressure pwet (sub-
script indicates the case of wet upper plate), as

pwetðTHÞ ¼ psatðTLÞ 1þ
hL

fg

RTL

DB xL
ðxLþDÞ þ C

DBþ 2C
TH � TL

TL

" #
: ð21Þ

Within the linear realm, the system pressure depends linearly on
the temperature TH of the upper plate. The pressure-temperature
curve is the main result of the experiments with the Phillips–
Onsager cell. Other interesting quantities, in particular mass flow J
and energy flux _Q , or the temperatures at the interfaces, are not
accessible to the measurements.

The dimensionless derivative of the cell pressure is Phillips’ heat
of transport (1); from the linearized equations:

Q �wet ¼ �
TL

psatðTLÞ
dpwetðTHÞ

dTH
¼ �

hL
fg

RTL

xL
xLþD DBþ C

DBþ 2C
; ð22Þ

The heat of transfer Q �wet is a cell property; it depends on the trans-
port coefficients for the interfaces and the bulk phases, and the
thicknesses of the latter. In particular, the heat of transfer is directly
proportional to the dimensionless heat of evaporation

hL
fg

RTL
, which re-

flects that the transport of heat is somewhat dominated by convec-
tive transfer of heat (J – 0).

The relative influence of bulk versus interface effects depends
on the thicknesses of liquid and vapor layer relative to the charac-
teristic length k0. If xV, xL, D are large compared to k0 , the contribu-
tions of the interface coefficients r̂ab can be ignored (C ’ 0), and
one obtains the simple result

Q �wetðk0 ! 0Þ ¼
hL

fg

RTL

xL

xL þ D
: ð23Þ

In a macroscopic cell with two wetted plates, the heat of transfer
depends only on the thicknesses of the liquid layers, and the enthal-
py of evaporation.

2.4. Dry upper plate

For the case of dry upper plate, see left of Fig. 1, the mass flux
vanishes in the cell, J = 0, and therefore the overall energy flux
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equals the measurable heat fluxes, _Q ¼ qv ¼ ql. In the bulk phases,
the heat flux follows from Fourier’s law, so that

_Q ¼ ql ¼ �jL
Tl � TL

xL
; _Q ¼ qv ¼ �jV

TV � Tv

xV
: ð24Þ

For vanishing mass flux, the interface relations (2) reduce to

psatðTlÞ � pffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTl
p ¼ r̂12

_Q
RTl

; � psatðTlÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTl
p Tv � Tl

Tl
¼ r̂22

_Q
RTl

: ð25Þ

For low gas pressure, we must allow for a temperature jump be-
tween vapor and the dry upper plate. Kinetic theory provides the
classical temperature jump condition, which can be written as [26]

� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTV
p TH � TV

TV
¼ 2� v

4v b
qV

RTV
: ð26Þ

Here, v is the accommodation coefficient and bis a constant of order
unity. Unless stated otherwise, for computations we shall set
v = b = 1.

The five equations (24)–(26) suffice to determine the five un-
knowns _Q ; Tl; Tv , TV and p. As for the case with wet upper plate,
we consider an explicit solution of the linearized system,

Tl � TL ¼ �
xL

jL

_Q ;

TV � Tv ¼ �
xV

jV

_Q ;

Tv � Tl ¼ �
TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p

psatðTLÞ
r̂22

_Q
RTL

;

TH � TV ¼ �
2� v

4v
TL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p

psatðTLÞ
b

_Q
RTL

;

psatðTlÞ � p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL

p
r̂12

_Q
RTL

:

ð27Þ

The four equations with explicit temperature differences can be
combined to relate heat flux to overall temperature difference as

_Q ¼ � psatðTLÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p QdðTH � TLÞ; ð28Þ

where Qd is the dimensionless cell conduction coefficient given by

1
Qd
¼ jV

jL

xL

k0
þ xV

k0
þ r̂22 þ

2� v
4v b; ð29Þ

here, we have again introduced the microscopic reference length k0

(19).
The system pressure follows from (25) and the above as

pðTHÞ ¼ psatðTlÞ 1þ r̂12Qd
TH � TL

TL

� �
: ð30Þ

To fully linearize, we consider the solution of (24)1 as

Tl ¼ TL �
xL

jL

_Q ¼ TL þ
xL

jL

psatðTLÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRTL
p QdðTH � TLÞ; ð31Þ

so that for small (TH � TL) the saturation pressure psat(Tl) in (30) can
be expanded. Applying again the Clausius–Clapeyron relation, we
obtain the cell pressure (subscript to indicate dry upper plate)

pdryðTHÞ ¼ psatðTLÞ þ psatðTLÞ
hL

fg

RTL

jV

jL

xL

k0
þ r̂12

" #
Qd

TH � TL

TL
: ð32Þ

Thus, within the linear realm, the system pressure depends linearly
on the temperature TH of the upper plate. The pressure-temperature
curve is the main result of the experiments with the Phillips–
Onsager cell. The dimensionless derivative of this function is
Phillips’ heat of transfer (1):
Q �dry ¼ �
TL

psatðTLÞ
dpdryðTHÞ

dTH
¼ �

hL
fg

RTL

jV

jL

xL

k0
þ r̂12

" #
Qd; ð33Þ

or, in more detail,

Q �dry ¼ �
hL

fg

RTL

jV
jL

xL
k0
þ r̂12

jV
jL

xL
k0
þ xV

k0
þ r̂22 þ 2�v

4v b
: ð34Þ

This explicit expression again shows that the heat of transfer as
calculated by Phillips and co-workers is a system property of the
cell: it depends on thickness and heat conductivities of the bulk lay-
ers of vapor and liquid, on the interfacial transfer coefficients for
evaporation and condensation, and on the wall accommodation
coefficient. Which terms play the most important role depends on
the widths of the bulk layers, relative to the characteristic length k0.

If the bulk layers are large compared to the characteristic length
k0, the interfacial terms can be ignored and we find the macro-
scopic heat of transfer for the cell with dry upper wall as

Q �dryðk0 ! 0Þ ¼ �
hL

fg

RTL

1
1þ jL

jV

xV
xL

: ð35Þ

In this case, the heat of transfer is directly proportional to the heat
of evaporation hL

fg , its actual value depending strongly on the
relative widths of vapor and liquid layer. Since jL > jV, increase of
the vapor layer thickness xV reduces the value of Q �dry.

In the other extreme, when the bulk layers become small com-
pared to k0, the cell heat of transfer is dominated by the interfacial
resistivities,

Q �dryðk0 ! 0Þ ¼ � r̂12

r22 þ 2�v
4v b

: ð36Þ

Even this value differs from the heat of transfer q⁄ as defined in (5),
since it not only accounts for the phase interface, but also for the
temperature jump at the wall. It should be noted, however, that
in this case the vapor is highly rarefied so that the use of Fourier’s
law might not be justified anymore [26].

The experiments in water are in a range where interface effects
are almost negligible (xV/k0 ’ 80). In the aniline experiments, how-
ever, they play a more important role (xV/k0 ’ 1.3).

3. Cold to warm mass transfer

Mills and Phillips report observations of cold to warm distillation ,
that is mass transfer from cold to warm, in their experiments [20].
With the results of Section 2.3, one can ask under which circum-
stances cold to warm mass transfer is possible. We shall do so,
assuming that the temperature difference is the only driving force
for the process.

Typically, in an evaporation and condensation experiment
between two liquids at different temperatures one will expect
the mass flux to be aligned with the heat flux, that is mass to be
transferred from the warmer liquid to the colder liquid. However,
as we shall see now, non-equilibrium thermodynamics does not
necessarily preclude mass transfer from the colder to the warmer
liquid altogether.

When cold to warm mass transfers occurs, latent heat is trans-
ported through the vapor against the temperature gradient,
opposite to the overall energy flux. The latter is the sum of the con-
vective flow of latent heat and conductive flow due to the
temperature gradient (i.e., the measurable heat flux). If the latent
heat transport is from cold to warm, there must be a big enough
temperature gradient in the vapor, so that the total energy flow
is from warm to cold. In the adjacent liquid layers, energy transfer
is purely conductive, and thus the temperature gradients in the
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liquid phases are aligned with the overall temperature gradient
(TH � TL) in the cell.

Above, in (15)–(17) we have introduced the dimensionless
transport coefficients J and Qw, which are positive for transport
of mass and energy from warm to cold. The coefficient Qw is posi-
tive for all conditions, energy always goes from warm to cold. The
mass transfer coefficient J , however, can be positive or negative;
with the sign chosen, a negative value of J indicates cold to warm
mass transfer. The sign for J is equal to the sign for the coefficient
A, defined in (18). If A is positive, then mass is transported from
warm to cold, but if A is negative, then mass is transported from
cold to warm. The coefficient A becomes negative for

hL
fg

RTL
<

r̂12
1
2

xV
k0
þ r̂22

< jq�j ðcold to warm mass transferÞ: ð37Þ

Cold to warm mass transfer could occur for substances in which the
dimensionless heat of transfer of the interface, jq�j ¼ r̂12

r̂22
, is large

compared to the dimensionless heat of vaporization,
hL

fg

RTL
, while, at

the same time, the vapor layer in the cell is rather thin, so that
1
2

xV
k0

is sufficiently small.
To further quantify the conditions at which cold to warm mass

transfer could be observed, we combine the above inequality with
the second law for the interface, r̂11 r̂22 � r̂12 r̂12 P 0, to find an
inequality relation between r̂22 and r̂11, viz.

r̂11 >
hL

fg

RTL

 !2
1

4r̂22

xV

k0

� �2

þ xV

k0
þ r̂22

" #
: ð38Þ

For given temperature and cell dimensions, the right hand side of
the inequality has a minimum at r̂22jmin ¼ 1

2
xV
k0

. It follows that the
smallest possible value for r̂11 is

r̂11 > 2
hL

fg

RTL

 !2
xV

k0

� �
: ð39Þ

We evaluate this condition for typical data from the water experi-
ments with the Phillips–Onsager cell [22]: The vapor thickness is
xV = 3.5 mm, the base temperature is TL = 2.5 �C, and the vapor ther-
mal conductivity is jV ¼ 0:0165 W

mK so that psatðTLÞ ¼ 730 Pa;
hL

fg

RTL
¼ 19:6, and k0 = 0.044 mm. With this data, we find

r̂11 > 2
hL

fg

RTL

 !2
xV

k0

� �
’ 61500: ð40Þ

This required value is 5 (five!) orders of magnitude above the value
for the resistivity r̂11 suggested by kinetic theory. Such an extremely
large value for the (dimensionless) resistivity for mass transfer
across a phase interface would make itself visible also in macro-
scopic evaporation experiments: evaporation would be quite slow,
and there would be significant deviation of vapor pressure from
the equilibrium saturation pressure for all evaporation experi-
ments. This would be well documented.

Large values of the resistivity r̂11 are obtained for rather small
condensation coefficient win (3), with values w < 0.000015. That
small values of the condensation coefficient have not been ob-
served in other experiments [27,28], and thus seem to be rather
unlikely.

For aniline [19] with xV = 2 mm, and base temperature
TL = 12.5 �C, we have [24] jV ¼ 0:00805 W

mK ; psatðTLÞ ¼ 23:5 Pa;
hL

fg

RTL
¼ 25:64, and k0 = 1.53 mm, which leads to the minimum dimen-

sionless resistivity r̂11 > 1714.
While the kinetic theory values for q⁄ are supported by some

molecular dynamics simulations [12], it is understood that its va-
lue can be larger, for a longer range contribution to the potential
between particles [13,2]. Experiments on interfacial temperature
jumps [14,15] seem to require interface resistances between one
and two orders of magnitude larger than those found using kinetic
theory [17], still much less than those required for cold to warm
mass transfer driven by a temperature difference.

We must conclude that, while thermodynamics of irreversible
processes would allow for cold to warm mass transfer in principle,
the analysis speaks against its existence. In a further evaluation of
the experiments by Mills and Phillips below, based on the mea-
sured pressure curves and the overall heat of transfer, we discuss
how the experiments may be affected in various ways (wetting,
contamination, heat leaks, etc). The analysis uses the simplified
Clausius–Clapeyron equation (14), which is only valid far from
the critical point. A more refined discussion of the possibility of
cold to warm mass transfer close to the critical point was
presented earlier [25].
4. Pressure and heat of transfer

4.1. Cell pressures

In the experiments with the Phillips–Onsager cell, the heat of
transfer Q⁄ is determined as the dimensionless slope of the pres-
sure p(TH), see (1). The pressure measured as temperature TH of
the upper plate is decreased or increased is the main outcome of
the experiments. Here we discuss the theoretical prediction for
the variation of pressure p(TH) with temperature. For the following
we refer to Fig. 2; see the caption for the data used. The figures
were produced from the full non-linear solution with ideal gas
resistivities, but for the discussion we shall refer to the linear
results frequently. Indeed, due to the small temperature difference
across the cell, the linear approximation agrees very well with the
full non-linear computation.

We present the analysis according to TIP of Phillips’ group’s
experiments. A typical experimental run in the Phillips–Onsager
cell starts at a positive temperature difference (TH � TL) with a
dry upper plate, say at Point A in Fig. 2. Heat is transferred down-
wards, from warm to cold. As the temperature TH is gradually low-
ered, the pressure pdry(TH), given in Eq. (32), slowly decreases along
the line A–O. The slope is almost constant, which shows that the



H. Struchtrup et al. / International Journal of Heat and Mass Transfer 58 (2013) 521–531 527
linear approximation is appropriate. For the data used to draw the
curves the heat of transfer as obtained from Eq. (34) is Q �dry ’ 0:42;
as the equation shows, this value strongly depends on the values of
xL and xV. At point O the temperature gradient between the plates
vanishes, and the cell is in thermal equilibrium. Accordingly, the
cell pressure is just the saturation pressure (for water at
psat(TL) = 731.4 Pa = 5.486 Torr).

When the temperature of the upper plate is further decreased,
the temperature gradient becomes negative, and heat is
transferred upwards, from warm to cold. Since TH is below the sat-
uration temperature for the pressure p, that is TH < Tsat(p), conden-
sation occurs at the upper plate. In the experiment, the upper plate
is not fully covered with liquid, but we shall proceed under the
assumption of complete wetting.

With wetted upper plate, the pressure in the cell is the average
saturation pressure (21), pwet(TH), which decreases with tempera-
ture, along the line O–B. Due to steeper slope, the heat of transfer
is larger, at Q �wet ’ 18:4. Under these conditions, water evaporates
from the warmer lower layer and condenses at the colder upper
layer (the usual warm to cold mass transfer!). Due to the small
temperature differences, the mass flow rate is quite small. For
(TH � TL) = �0.5 K the mass flow rate is J ’ 0:01 g

cm2h , corresponding
to a growth rate of only 0:1 mm

h .
At point B cooling stops, and the temperature TH of the upper

plate is increased again. As long as TH < TL heat and mass are still
transferred upwards. At the equilibrium point O the temperature
gradient changes sign: Now TH > TL, and heat and mass are
transferred downwards. As long as the upper plate is covered with
water, the pressure curve follows along the line O–C.

Since the layer of liquid that accumulated when the upper plate
was cooled is quite thin, it will evaporate after some time. As soon
as all liquid is evaporated, the pressure must follow the line O–A.
Thus, one might observe the jump a–b in the pressure curve.

In a real experiment one might expect uneven drying of the
upper plate, that is as liquid is removed through evaporation, parts
of the plate will be dry while other parts are still covered with
liquid. As a result, instead of the jump there might be a transition
curve ‘a–b’ as indicated in the figure.

According to this interpretation, which is based on non-equilib-
rium thermodynamics, one will observe a kink (or ‘‘knee’’ [22]) in
the pressure curve. The location of the kink, in particular its
Fig. 3. Q �dry for the case of dry upper plate with water with TL = 273.15 K as function of r
temperature Tkink, is where the pressures of the case with dry
and wet upper wall agree, that is at

pdryðTkinkÞ ¼ pwetðTkinkÞ: ð41Þ

Evaluation of Eqs. (32) and (21) shows that can only happen at the
equilibrium point, where

Tkink ¼ TL; and pdryðTkinkÞ ¼ pwetðTkinkÞ ¼ psatðTLÞ: ð42Þ

The location of the kink is at the equilibrium point irrespective of
any other values of the parameters that describe the transport in
the cell, such as cell size, layer thicknesses, thermal conductivities,
or interface resistivities.

The slopes of the pressure curves O–A and B–O–C determine the
heats of transfer Q �dry and Q �wet. As is clear from (34) and (22) these
slopes depend on the set-up of the cell, in particular on the thick-
ness of the vapor and liquid layers. Details on this dependence are
discussed next.
4.2. Dry upper plate: Q �dry

The value of Q �dry, i.e., the dimensionless pressure slope for the
dry upper layer, depends strongly on the overall thickness of the
cell and the relative thickness of vapor and liquid layer, see Eq.
(34). Fig. 3 shows, for water at TL = 273.15 K and the ideal gas resis-
tivities (3), Q �dry for cells of different overall thickness X = xL + xV as
a function of the relative thickness of the liquid layer, d ¼ xL

xLþxV
. For

all data Q �dry is negative, its absolute value grows with both d and X.
As already discussed in Section 2.4, narrow cells, where X is

small, are dominated by the interfacial processes and have small
Q �dry, while wider cells are dominated by bulk processes, and have
large Q �dry. As X grows, the curve approaches the limiting value (35)
which is already reached for X = 7 mm. The exact prediction for
Q �dry depends on exact values for the thickness of the liquid and
vapor layers. Full comparison with the experiment is only possible
when the exact thickness of the liquid layer is known.

Due to lack of accurate data for interface resistivities, we shall
not present the corresponding curves for other values of the
resistivities.
elative liquid thickness d ¼ xL
xLþxV

with overall cell thickness X = xL + xV as parameter.



Fig. 4. Q �wet for the case of wet upper plate with water with TL = 273.15 K as function of relative liquid thickness d ¼ xLþD
xLþDþxV

with overall cell thickness X = xL + xV + D as
parameter. The upper liquid layer is much thinner than the lower layer, with D

xL
¼ 0:0001. Note the logarithmic scale.

Fig. 5. Experimental results from the Onsager cell with water [22]. Circles are
results taken as TH decreases, squares are results taken as TH increases. Continuous
lines are added to indicate our interpretation of the results for dry and wet upper
plates, and the drying of the upper plate. The large circle indicates the location of
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4.3. Wet upper plate: Q �wet

Also the value of Q �wet, i.e., the dimensionless pressure slope for
wet upper layer, depends strongly on the overall thickness of the
cell and the relative thickness of vapor and liquid layer, see Eq.
(22). Fig. 4 shows, for water at TL = 273.15 K and the ideal gas resis-
tivities (3), Q �wet for cells of different thickness X = xL + xV + D as a
function of the relative thickness of the liquid layer, d ¼ xLþD

xLþxVþD.

For the plot we assumed a very thin liquid layer at the upper wall,
with D

xL
¼ 0:001. For all data Q �wet is negative, its absolute value

grows with both d and X. From Eq. (22) follows that independent
of all parameters set, Q �wet must lie in the interval

� hL
fg

RTL

xL
xLþD ;� 1

2
hL

fg

RTL

� �
, in the plot corresponding to [�19.8,�9.9].

We observe again that narrow cells, where X is small, are dom-
inated by the interfacial processes and have smaller Q �wet, while
wider cells are dominated by bulk processes, and have large Q �wet.
The exact prediction for Q �wet depends on exact values for the thick-
ness of the liquid and vapor layers. Full comparison with the
experiment is only possible when the exact thickness of the liquid
layer is known.

Due to lack of accurate data for interface resistivities, we shall
not present similar curves for other values of the resistivities.
the ‘‘knee’’.
4.4. Comparison with experiment

Fig. 5 shows results from Ref. [22] with annotations that indi-
cate our interpretation of the data. In experiments with aniline
[19], the experiments do not show the accentuated knee as for
water, but a continuous change in curvature, which we attribute
to incomplete wetting, and increase of wetting ratio over time.

The most striking difference between experiment and theory is
the location of the point at which wetting of the upper plate begins
as its temperature decreases (the location of the ‘‘kink’’ or ‘‘knee’’),
which is marked with the circle. As we have shown above, non-
equilibrium thermodynamics predicts the kink at the equilibrium
point of the cell, that is at TH = TL, p = psat(TL), irrespective the values
of all other parameters. The experimental data, however, shows
this point at elevated temperature of the upper plate, TH = TL + 0.5
K. Thus, there is an irreconcilable disagreement between thermo-
dynamic theory and the experimental data.

As reported by Phillips et al., the location of the kink is where
the mass flow switches direction. Left of the kink Phillips et al.
report mass flow upwards. Thus, if indeed the kink is observed at
TH = Tkink = TL + 0.5 K, there would be mass transfer from the cold
to the warm plate, what Phillips et al. describe as cold to warm dis-
tillation. If, however, the kink is observed at Tkink = TL, as predicted
by thermodynamic theory, then the observed mass transfer from
bottom to top of the Phillips–Onsager cell would be the usual warm
to cold distillation.

Our discussion of the possibility of cold to warm mass transfer
in Section 3 showed that, while possible in principle, one must
exclude the actual observation of this process, since it would be
possible only for extremely large interfacial resistivities, which
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would be manifest in all observations of evaporation processes. A
disagreement of theory and experiment might be a mix of several
factors. Possible problems in an experiment may be:

(a) Wetting or contamination of the upper plate. Wetting effects
or small contamination of the upper plate could lower the
effective saturation pressure at the plate. As the short discus-
sion in the appendix shows, such a change in saturation pres-
sure at the upper plate moves the location of the kink to higher
temperatures, Tkink > TL. Mass and heat flux still change their
direction at the kink, with an upward mass flux below Tkink .
This would yield a mass flux from cold to warm for upper plate
temperatures between TL and Tkink, which is driven by the dif-
ference in saturation pressures between the lower liquid sur-
face and the upper plate, which is somewhat more absorbing
than the liquid surface. In other words, in this case there are
two competing thermodynamic forces, a thermal force (tem-
perature difference) and a chemical force (difference in satu-
ration pressure, or rather, in chemical potential) which
oppose each other. If the chemical force is sufficiently high,
mass transfer is against the temperature gradient.

(b) Heat leaks might spoil the temperature measurements. Even
a small offset in temperature measurement, in particular of
the temperature difference TH � TL, could explain the dis-
crepancy between experiment and thermodynamic theory.

Uncertainties in the measurement are relevant. The water
experiments were performed for cells of thickness X ’ 7 mm and
d ¼ xL

xLþxV
¼ 0:42, for which the theory (with ideal gas resistivities)

predicts Q �dry ¼ �0:435 and , Q �wet ¼ �19:8. These value differ from
those claimed for the experiment, which are Q �dry; exp ’ �0:9 and ,
Q �wet; exp ’ �10. The theoretical estimates depend on the resistivi-
ties and are sensitive to the layer thicknesses.

5. Temperature profiles and jumps

The solution of our model for the Phillips–Onsager cell allows us
to determine the temperature curve throughout the cell. Fig. 6
shows temperature curves in the 4mm aniline cell with d = 0.5
(xL = xV = 2 mm), TL = 285.75 K, TH = 288.25 K for dry and wet upper
plate. The conditions in the cell are such that xV/k0 = 1.3, which im-
plies a marked influence of the interface conditions (2). In the
water experiments we have xV/k0 = 80 which implies dominance
of bulk effects, and very small jumps at the phase interface.

In both cases heat flows downwards. For the wet plate there is
an accompanying mass flux, which will eventually lead to drying of
the upper plate. The model predicts temperature jumps at all the
phase interfaces and at the dry plate, which are clearly visible in
the figure.

In the case of wet upper plate, the vapor temperature profile
shows the well known inversion [6,29,2]. Due to the inverted gra-
dient in the vapor temperature, there is conductive transport of
heat towards the upper—warmer—plate. However, the convective
flow through the vapor carries the heat of evaporation, and overall
heat transfer is downward, from hot to cold. Due to convective
transfer, the total amount of heat is considerably larger than in
the case of dry plate, where the low conductivity of the vapor
establishes a barrier against heat transfer. The different slopes of
temperature in the liquid give a good indication that far more heat
is transferred in case of wet upper plate, where slopes are steeper.

While the temperature jumps are small, they could be measur-
able. This would require instrumentation of the Phillips–Onsager
cell with a number of thermocouples, and monitoring of conditions
discussed above. To measure jumps and temperature inversion one
will have to ensure sufficient wetting of the upper plate for the
duration of the experiment.
Jumps, and thus inversion, will be more marked in smaller cells,
where the ratio k0/xV is bigger. In the experiments with water, xV/k0

is almost two orders of magnitude larger than for aniline, jumps
and inversion are not visible in the curves, which therefore are
not presented.

There is some discussion in [22] where the different slopes of
the pressure curves (which we denoted as Q �wet and Q �dry) are attrib-
uted to the occurrence of large temperature jumps at the dry upper
plate, due to small accommodation coefficient of the dry plate as
compared to the wet plate. Our model does not support this inter-
pretation: For the experimental data all temperature jumps are
small and do only mildly influence the heat of transfer. The large
difference between the heat of transfer for wet and dry upper plate
is explained by the contribution of convective transport in case of
the wet upper plate.
6. Conclusions

The theory of irreversible processes, as extended to heteroge-
neous systems, was used to evaluate the transport processes in
the Phillips–Onsager cell. The cell pressure and the overall Onsager
heat of transfer were computed as functions of the temperature
difference over the cell, and compared to experiments. The heat
of transfer for the whole cell, Q⁄, depended on the cell size, and
in particular on whether the upper plate was wetted or not. In
the case of a dry upper plate, heat is transferred by conduction
only, and the overall heat of transfer is relatively small. When
the upper plate is wet, the heat of vaporization is transferred
convectively, and the overall heat of transfer is dramatically in-
creased. The relationship between the overall heat of transfer
and the interfacial heat of transfer was presented. The new rela-
tions may facilitate more detailed resolutions of experimental
results on phase transitions.

We discuss how to take advantage of small cells to determine
interface resistivities, and also to observe the inverse temperature
profile in a vapor enclosed by two liquid surfaces. The equations
are further used to discuss the conditions for mass from a colder
to a warmer liquid surface. The outcome stands in disagreement
with experiments where temperature difference driven cold to
warm mass transfer through the vapor was reported.
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Fig. 8. Mass flux J and reduced energy flux _Q=RTL as functions of temperature for
the cases with original and modified saturation presssures.
Appendix A. Effect of upper plate saturation pressure

We study the effect that a changed saturation pressure at the
upper plate would have on the location of the kink, and the heat
of transport. A change in saturation pressure could occur due to
energetic interaction between plate and liquid that cause wetting
behavior, or due to contamination of the plate with soluble
particles.

We denote the saturation pressure at the upper plate as pup
satðTÞ.

This saturation pressure must replace the saturation pressure in
the interface condition for the upper interface (11). To continue,
we write the Clausius–Clapeyron equation for this pressure (at
TD) as

pup
satðTDÞ ¼ pup

satðTLÞ 1þ
hL;up

fg

RTL

TD � TL

TL

" #

¼ PuppsatðTLÞ 1þ Hup
hL

fg

RTL

TD � TL

TL

" #
: ð43Þ

where Pup and Hup are the ratios of saturation pressure and enthalpy
between the wetted upper plate and pure water, at TL. Evaluation of
the linear transport equations with the new saturation pressure
yields the cell pressure pwet,up(TH). The location of the kink is now
obtained from the condition pwet,up(Tkink) = pdry(Tkink), with pdry(T)
given in (32). The resulting expressions are rather long, and thus
we shall present the results only graphically.

We use the same data as for Fig. 2, with Hup = 1 (for simplicity)
and Pup = 0.9683; the latter value was fitted so that Tkink � TL = 0.5 -
K. Fig. 7 shows the pressure curves for the Phillips–Onsager cell
with dry and wet upper plate as in Fig. 2 and in addition the pres-
sure pwet,up(TH) that results when the saturation pressure at the
upper plate is lowered to account for a wetting surface, or some
contamination. Due to the lower saturation pressure, the curve is
Fig. 7. Pressures in the Onsager cell for water with TL = 275.65 K, xL = 3.5 mm ,
xV = 3.5 mm, D = 0.175 mm: pdry(TH), pressure in cell with dry upper plate; pwet(TH),
pressure in cell with wet upper plate and saturation pressure of pure substance;
pwet,up(TH), pressure in cell with wet upper plate and lowered saturation pressure to
account for wetting surface, or contamination.
shifted, so that pwet,up(TH) and pdry(TH)intersect at a higher temper-
ature (Tkink � TL = 0.5 K).

The next figure, Fig. 8, shows the corresponding curves for mass
flux J and energy flux _Q=RTL. Both change their sign close to the
location of the kink. Detailed examination shows that J changes
the sign at T � TL = 0.499938 K while _Q changes sign at
T � TL = 0.484214 K. The modification of the saturation pressure
introduces a chemical force into the system, so that two competing
forces act, a thermal force due to the temperature gradient, and a
chemical force due to the difference in saturation pressures (or,
rather, due to a gradient in chemical potential). The resulting flows
result as the net effect of both forces.
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