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Inverted quantum states provide a challenge to classical thermodynamics, since they appear to contradict
the classical formulation of the second law of thermodynamics. Ramsey interpreted these states as stable
equilibrium states of negative thermodynamic temperature, and added a provision to allow these states to the
Kelvin-Planck statement of the second law [N. F. Ramsey, Phys. Rev. 103, 20 (1956)]. Since then, Ramsey’s
interpretation has prevailed in the literature. Here, we present an alternative option to accommodate inverted
states within thermodynamics, which strictly enforces the original Kelvin-Planck statement of the second law,
and reconciles inverted states and the second law by interpreting the former as unstable states, for which no
temperature—positive or negative—can be defined. Specifically, we recognize inverted quantum states as
temperature-unstable states, for which all processes are in agreement with the original Kelvin-Planck
statement of the second law, and positive thermodynamic temperatures in stable equilibrium states. These
temperature-unstable states can only be created by work done to the system, which is stored as energy in the
unstable states, and can be released as work again, just as in a battery or a spring.
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States of apparent negative thermodynamic temperatures
were first produced in 1951 [1] by forced inversion of
quantum states in select systems, and to the present day still
garner widespread attention, e.g., Refs. [2–6].
Recent attempts to repudiate negative temperatures led to

a vivid discussion on the definition of equilibrium entropy
in statistical mechanics (Boltzmann versus Gibbs entropy)
[3–6]. The following discussion relies on the Boltzmann
definition of entropy, which leads to apparent negative
temperatures.
Positive temperatures guarantee stability of equilibrium

states, and apparent negative temperatures indicate unstable
states. Nevertheless, only a few authors discuss the stability
of the inverted quantum states, or question whether these
are stable equilibrium states.
In a 1954 book review [7], Giauque writes, “The author’s

discussion in this section, of a ’formal’ case of ’negative
temperature’, based on non-equilibrium nuclear spin states
is very unfortunate. It is the sort of thing with which
newspaper reporters can, and probably will, do a great deal
of damage. Temperature has no meaning when the states
used to define it are not in equilibrium. Innumerable cases
in ordinary chemical thermodynamics could be cited in
which corresponding nonequilibrium systems exist.”
In contrast, Ramsey, in 1956 argued that inverted

quantum states require modification of the Kelvin-
Planck statement of the second law of thermodynamics,
which in essence forbids that work can be obtained from a
single system in stable thermodynamic equilibrium [8].
Throughout his treatment, Ramsey assumes that the
observed states are stable equilibrium states, dismissing
Giauque’s statement as a misunderstanding.

Most subsequent authors considering negative thermody-
namic temperature built onRamsey’s approach [2,5,6,8–10],
implicitly assuming stable equilibrium states.
More recently, Romero-Rochin [11] showed that states

of apparent negative temperature are unstable in the sense
that the smallest bit of standard material—which can only
have positive temperature—brought in contact with an
arbitrarily large system of apparent negative temperature
will force the latter to assume a positive temperature.
This makes it impossible to measure the temperature of

systems in inverted states by conventional means, i.e., a
thermometer made of an arbitrary material, since in the
equilibration between inverted system and thermometer,
the inverted system will fall back into a state of positive
temperature. Hence, in the following, we shall speak of
these states as temperature-unstable states.
Moreover, a large inverted system cannot be considered

as a heat reservoir, which is defined as a system whose
change in temperature is negligible when it exchanges heat
with another system [12] and which passes through stable
equilibrium states only [13].
Hoffmann [14] described inverted quantum systems as

mixtures in nonequilibrium states.
It will be shown that the classical interpretation of

thermodynamics provides a complete description of
inverted quantum states as temperature-unstable states.
The systems are trapped in their unstable state, but will
return to stable equilibrium states if provided a means of
work or heat exchange with their surroundings. As in
mechanical systems, or in chemically unstable mixtures,
work can be stored in, and retrieved from, the energy of
the unstable states.

PHYSICAL REVIEW LETTERS 120, 250602 (2018)

0031-9007=18=120(25)=250602(5) 250602-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.250602&domain=pdf&date_stamp=2018-06-21
https://doi.org/10.1103/PhysRev.103.20
https://doi.org/10.1103/PhysRevLett.120.250602
https://doi.org/10.1103/PhysRevLett.120.250602
https://doi.org/10.1103/PhysRevLett.120.250602
https://doi.org/10.1103/PhysRevLett.120.250602


Since thermodynamic temperature is only defined for
stable equilibrium states [13], it is impossible to define a
temperature for the inverted states, to which one cannot
assign a (positive or negative) thermodynamic temperature.
Indeed, when inverted quantum states are recognized as
temperature-unstable states, there is no need for Ramsey’s
modification of the second law of thermodynamics.
The second law of thermodynamics describes the

evolution of thermodynamic systems towards stable equi-
librium states [13,15]. In the language of irreversible
thermodynamics, the deviation from a stable equilibrium
state provides a thermodynamic driving force for a process
towards stable equilibrium [16] (also see Supplemental
Material [17], Sec. I).
Work can be produced from a process towards stable

thermodynamic equilibrium. Indeed, all work producing
thermodynamic engines are driven by thermodynamic
forces. For example, the driving force for a heat engine
is the temperature difference between the two thermal
reservoirs with which the engine interacts. Heat will flow
from the hotter to the colder reservoir in an attempt to
equilibrate, and a heat engine converts some of the heat
flowing into work [13,15,17].
Work can also be produced from mechanical energy

stored in a system, where the work is equal to the energy
difference to the state of minimum energy (ground state) of
the system. Examples are a compressed spring that can do
work until fully relaxed, or the swirling motion of a fluid,
from which work can be produced until the fluid comes to
rest. The driving force for these work producing processes
is the deviation from the ground state.
The Kelvin-Planck statement of the second law of

thermodynamics states that it is impossible to construct
an engine that will work in a complete cycle and produce no
effect except the raising of a weight (i.e., produce work)
and the transfer of energy out of a system (e.g., a reservoir)
in a stable equilibrium state [13] (for other, equivalent,
fomulations see, e.g., Refs. [8,12,15]).
While it is often not explicitly stated, it is understood that

the reservoir is (a) in a stable thermodynamical equilibrium
state and (b) in its mechanical ground state.
Inverted quantum states are reached by sudden field

inversion, and the analysis shows that a system in an
inverted quantum state appears to have negative temper-
atures (see below, and also Ref. [17], Sec. III), and can
produce work—in contradiction to the Kelvin-Planck state-
ment. There are two possible approaches for resolution.
Stance I.—One might consider the Kelvin-Planck state-

ment to be universally valid, and hence conclude that
inverted quantum states are either unstable equilibrium
states or akin to elevated mechanical states.
Stance II.—One might consider inverted states as stable

equilibrium states, and hence must extend the Kelvin-
Planck statement to allow these special states [8,12,13].
Ramsey chose stance II, by declaring the above formu-

lation to be valid for reservoirs at positive temperatures, and

adding the following (Kelvin-Planck-Ramsey statement):
“It is impossible to construct an engine that will operate in a
closed cycle and produce no effect other than (2) the
rejection of heat into a negative-temperature reservoir with
the corresponding work being done on the engine” [8].
Note that this statement allows the opposite, namely, the
production of work.
Following stance I, we will argue that inverted quantum

states of apparent negative temperature can be described
within classical thermodynamics, if they are considered to
not be in a stable equilibrium state. The subsequent
discussion will show that inverted states can be described
as temperature-unstable states that store the work required
for their creation as energy, which can be converted into
work again. With this, they are akin to chemically unstable
states, or mechanical systems away from their ground state.
For instance, a mixture of hydrogen, oxygen, and water

vapor behaves like an inert gas mixture for a wider range
of temperatures and pressures. This mixture is in thermal
and mechanical equilibrium (homogeneous temperature
and pressure), but trapped in a chemically unstable state.
Using membrane separation and a fuel cell, (electrical)
work can be produced from the mixture (Ref. [17], Sec. II).
This does not violate the original Kelvin-Planck statement,
since the mixture is not in full—thermal, mechanical, and
chemical—stable equilibrium.
The driving force for the process is the deviation from

stable chemical equilibrium, the fuel cell produces work
from the driving force, as the system moves towards
stable equilibrium. In the inversion of the process, the fuel
cell is replaced by an electrolyzer which consumes work
to split water, moving the system further away from stable
equilibrium.
With work consumed in the electrolyzer, and work

produced by the fuel cell, work can be stored in, and
retrieved from, the energy of the trapped chemical states.
Similarly, mechanical systems can be brought out of

their ground state by doing work, e.g., compression of a
spring, acceleration of a flywheel, or inversion of a rigid
pendulum. Work can be retrieved when the system returns
to the ground state.
In both cases, due to irreversible processes, the work

done by the system in discharging is smaller than the work
done to the system in charging (Ref. [17], Sec. II).
To proceed, we consider the simplest model possible,

where the quantum systems have a single degree of
freedom, the occupation number of quantum elements.
There are no other parameters to describe the system, or all
other parameters remain frozen. Bounded energy of quan-
tum states and energy exchange between the quantum
elements [2,8] lead to a relation between system entropy S
and system energy E given by a curve SðEÞ which first
increases to a maximum and then decreases (Fig. 1).
Since the system has no additional parameters, (revers-

ible) work exchange described by a pair of conjugate
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variables, as in _W ¼ YðdZ=dtÞ [12], is excluded. For the
discussion on the grounds of thermodynamics, no deeper
knowledge of the system and its manipulation, such as
mechanisms for the work exchange, is required. The
Supplemental Material (Ref. [17], Sec. III) uses a simple
quantum model [14] to illustrate some aspects of these
systems and the processes.
We only require the general form of the curve SðEÞ and

the first and second law of thermodynamics, which we
write as [15] (see also Ref. [17], Sec. I)

dE
dt

¼ _Q − _W;
dS
dt

−
_Q
TR

¼ _Sgen ≥ 0: ð1Þ

Here, _Q is the heat transfer rate (positive for heat added to
the system), _W is the power (positive for work done by the
system), TR is the temperature at which heat crosses the
system boundary, and _Sgen is the entropy generation rate,
which is positive in nonequilibrium and vanishes in
equilibrium.
With the relation SðEÞ, the two laws combine to

�
dS
dE

−
1

TR

�
_Q −

dS
dE

_W ¼ _Sgen ≥ 0: ð2Þ

To clarify the meaning of (dS=dE), we study two simple
processes. For a pure heat transfer process between the
system and a thermal reservoir at temperature TR, there is
no work, _W ¼ 0, and we have�

dS
dE

−
1

TR

�
_Q ¼ _Sgen ≥ 0: ð3Þ

Heat _Q will flow until the entropy generation vanishes and
the final equilibrium state, indicated by a subscript E, is
reached, where [11,15]

�
dS
dE

�
jE
¼ 1

TR
: ð4Þ

Temperature is defined such that it is equal between two
systems in stable thermal equilibrium [12,13,15]; hence, in
this final state, system temperature T equals reservoir
temperature TR, which gives the definition of thermody-
namic temperature of the system in stable equilibrium:�

dS
dE

�
jE
¼ 1

T
: ð5Þ

According to the Clausius statement of the second law
[12,13,15,17] heat must go from hot to cold by itself.
Assuming the system is in stable equilbrium states during
the process, Eq. (3) can be written as

ðβ − βRÞð− _QÞ ¼ _Sgen ≥ 0; ð6Þ
where β ¼ −ð1=TÞ. If the system is hotter than the
reservoir, the second law requires that the system loses
heat, _Q < 0; hence, β > βR. The parameter β provides a
natural temperature scale from coldest, β ¼ −∞, to hottest,
β ¼ þ∞, so that negative temperatures (β > 0) refer to
hotter states than positive temperatures (β < 0) [8].
However, following stance I, negative temperatures
(β > 0) are excluded due to the original Kelvin-Planck
statement, as is shown next.
For an adiabatic process, where _Q ¼ 0, the combined

laws Eq. (2) reduce to

−
dS
dE

_W ¼ _Sgen ≥ 0: ð7Þ

Work done by the system is positive. For the case that the
system is in a stable thermodynamic equilibrium state, the
original Kelvin-Planck statement forbids positive work, but
allows us to supply work to the system, _W ¼ −j _Wj < 0;
hence, �

dS
dE

�
jE
j _Wj ¼ 1

T
j _Wj ¼ _Sgen ≥ 0: ð8Þ

This relation requires positive thermodynamic temperature:�
dS
dE

�
jE
¼ 1

T
¼ −β ≥ 0: ð9Þ

In summary, according to the second law interpretation
of stance I, only states on the ascending branch of the SðEÞ
curve are stable equilibrium states, and these have positive
temperatures.
Then, high energy states on the descending branch must

be akin to unstable states, or elevated mechanical states,
and we speak of temperature-unstable states. The second
law (stance I) does not forbid that these produce work; with
_W ¼ j _Wj > 0, we have

S

E

stable equilibrium states temperature-unstable states

a
b

c

de

EbEdEeEcEa

FIG. 1. Processes on and across the entropy-energy relation
SðEÞ. States on the ascending part of the curve are stable
equilibrium states (black), states on the descending part are
temperature-unstable states (red dashes). Processes a → b → c
and a → b → d → e → a are permitted irreversible processes;
see discussion in the text.
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−
�
dS
dE

�
j _Wj ¼ _Sgen ≥ 0: ð10Þ

Work is produced in an irreversible process while the
energy of the system decreases and its entropy increases, on
the way towards stable equilibrium.
Ramsey [8] and others, following stance II, considered

these states as stable, and defined the system temperature for
all states through ð1=TÞ ¼ ðdS=dEÞ, which leads to neg-
ative temperatures for the descending branch, and requires
Ramsey’s addendum to the Kelvin-Planck statement.
We study storage of energy in inverted quantum states.

No continuous process on the curve can connect the
ascending and descending branches of the curve [10]
(see also Ref. [17], Sec. III). Therefore, to produce a state
of apparent negative temperature, one has to leave the
curve, and “jump” from the stable branch to the unstable
branch. This cannot be done by heating, and, to not have
the quantum system fall back to thermal equilibrium with
the reservoir, the system must be thermally detached, i.e.,
_Q ¼ 0.
For such a process, shown as curve a → b in Fig. 1, the

first and second law are integrated over the process to give

Eb − Ea ¼ −Wab > 0; Sb − Sa ¼ Sabgen ≥ 0: ð11Þ

Here, Wab < 0 is the work required to change the energy
from Ea to Eb, and Sabgen is the generation of entropy in this
possibly irreversible process.
Such a state can be reached by state inversion [1].

A perfect inversion process is reversible [14], with Sb ¼ Sa
and Sabgen ¼ 0. For an imperfect inversion, entropy is
generated, Sb > Sa.
The work added to force the system into the unstable

state b can, at least in part, be recovered by allowing the
system to return to the stable branch, in a reverse inversion
process b → c, for which the laws give

Ec − Eb ¼ −Wbc < 0; Sc − Sb ¼ Sbcgen ≥ 0: ð12Þ

The system does work, Wbc > 0, when returning from the
unstable state b to the stable state c, and the second law
restricts the states that can possibly be reached to those
with equal or larger entropy. Obtaining work from this
process is not a violation of the second law, since state b is
not a stable equilibrium state, but a temperature-unstable
state that stores energy equal to the work required for its
creation. While the process a → b must be forced—work
is required to bring the system out of stable equilibrium—
the inverse process b → c is driven by the desire to reach
stable equilibrium.
The difference between work for charge and discharge is

the work loss,

Wabc
loss ¼ jWabj −Wbc ¼ Ec − Ea ≥ 0; ð13Þ

where Wabc
loss ¼ 0 for the case of reversible charge and

discharge (Ec ¼ Ea). Positive loss for the irreversible case
can be read from Fig. 1, where the entropy generated is
Sabcgen ¼ Sc − Sa ≥ 0.
Instead of returning from unstable state b to the stable

branch, one might run a process through the unstable states,
on the descending branch of the curve SðEÞ to state d.
The quantum system is still detached from the heat bath;
hence, the process is adiabatic. For the process b → d on
the curve, the laws reduce to

Ed − Eb ¼ −Wbd < 0; Sd − Sb ¼ Sbdgen ≥ 0: ð14Þ

Entropy must grow, and the curve in Fig. 1 shows that
energy will decrease. Accordingly, work Wbd > 0 is done
by the system, while the process is irreversible, with
positive entropy generation Sbdgen. This process does not
violate the second law (stance I): we observe a system in
a temperature-unstable state in a process towards its
stable equilibrium state. The work Wbd obtained is part of
the work Wab stored in the energy of the temperature-
unstable state.
For a fuller picture, we study a closed process loop, with

the following processes (see Fig. 1): (a → b) state inversion
by work: (b → d) work done in an irreversible process;
(d → e) work done in reverse state inversion; (e → a)
return to initial state by cooling.
Stable state e has higher energy, and higher temperature

Te, than the initial state a. More work is available from
cooling the system by means of a heat engine, from Te to
reservoir temperature Ta. Assuming a reversible engine, the
first and second law show that one can obtain the work [15]

Wea ¼ ðEe − EaÞ − TaðSe − SaÞ > 0: ð15Þ

The overall work loss for the complete process is

Wabdea
loss ¼ jWabj −Wbd −Wde −Wea ¼ TaðSe − SaÞ ≥ 0:

ð16Þ

Hence, the overall work loss of charging and discharging
the quantum system is the reservoir temperature Ta times
the overall entropy generation of the storage process, just as
for a chemically unstable mixture (see Ref. [17], Sec. II).
Next, we discuss heat transfer involving inverted quan-

tum systems. As stated above, systems in inverted quantum
states will fall back to stable equilibrium states, and positive
temperatures, when they come in thermal contact with
standard systems (T > 0) of arbitrary size [11]. In this case,
some of the work stored in the energy of temperature-
unstable states is dissipated by irreversible processes.
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One might also bring two systems (of the same type) that
allow inverted states into contact. In this case, the inter-
action between the quantum elements will lead to a mixing
process [14], the redistribution of energy between quantum
elements, where, dependent on the size of the two systems
and their initial states, the final state can be on any branch
of the curve. Total energy is conserved, and due to the
convexity of the curve SðEÞ, entropy increases; that is, the
process is irreversible (see Ref. [17], Sec. III).
Indeed, the only way to move a system in a temperature-

unstable state (say, state b in Fig. 1) to higher energies on
the curve (i.e., without a detour through stable states) is
through contact with an inverted system x at higher specific
energy ðEx=nxÞ > ðEb=nbÞ (nx, nb are the mole numbers
of the two systems). Both systems store energy equal to the
work required for their creation, and after the interaction
some of this energy is lost to entropy generation, and
cannot be recovered as work anymore.
This process of energy transfer between systems of

invertible quantum states can be described as heat transfer
between states of apparent negative temperature, from hot
to cold. Hence, in a world of only invertible quantum
systems, ðdS=dEÞ < 0 might be considered as temperature
to describe heat transfer.
However, one must not mistake ðdS=dEÞ < 0 for a

measurable temperature in the classical sense, since meas-
urement requires stable thermal equilibrium between
thermometer and system, without any restriction on the
thermometer material. Similarly, a large system of inverted
quantum states might be considered as a heat bath for a
small system made of the same material, but not for a small
system of any other material. Indeed, contact with the latter,
or a thermometer, will have the inverted states fall back into
stable equilibrium states at ðdS=dEÞ > 0 [11].
We have cited only a few contributions from the

literature which followed Ramsey’s modification of the
second law (stance II), and evaluate, e.g., heat engines
operating between reservoirs of positive and negative
thermodynamic temperatures [9]. This requires heat trans-
fer into, and out of, systems in states of apparent negative
temperatures, which can only occur between systems made
from the same material. Carnot efficiencies at [5] or above
[4] unity might occur since reservoirs in temperature-
unstable states can release the work that was required
for their generation. No general conclusions on Carnot and
other engines—made from arbitrary materials—involving
negative temperatures and heat transfer are possible.
Inverted quantum states are special states [13], indeed,

since they can be understood as being not in stable
equilibrium. They have a single degree of freedom, which
is frozen as long as a system remains isolated. Any
contact with the surroundings, either by heat transfer or
by work, allows the system to approach stable states. One
can determine their energy-entropy relation, but, since

temperature is defined for stable equilibrium states, one
cannot assign a temperature to these states. The work
required for their creation is stored as energy of the special
state, just like in a battery or in a mechanical spring, and
can be recovered.
There is no contradiction to classical thermodynamics

(stance I) when inverted quantum states of apparent negative
temperature are recognized as nonstable. Negative thermo-
dynamic temperatures of stable equilibrium states violate the
second law of thermodynamics, and should not be used.
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