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In this work, we make a further step in bringing
together different approaches to non-equilibrium
thermodynamics. The structure of the moment
hierarchy derived from the Boltzmann equation is
at the heart of rational extended thermodynamics
(RET, developed by Ingo Müller and Tommaso
Ruggeri). Whereas the full moment hierarchy has
the structure expressed in the general equation
for the nonequilibrium reversible–irreversible coup-
ling (GENERIC), the Poisson bracket structure of
reversible dynamics postulated in that approach is
a major obstacle for truncating moment hierarchies,
which seems to work only in exceptional cases
(most importantly, for the five moments associated
with conservation laws). The practical importance
of truncated moment hierarchies in rarefied gas
dynamics and microfluidics motivates us to develop
a new strategy for establishing the full GENERIC
structure of truncated moment equations, based
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on non-entropy-producing irreversible processes associated with Casimir symmetry. Detailed
results are given for the special case of 10 moments.

This article is part of the theme issue ‘Fundamental aspects of nonequilibrium
thermodynamics’.

1. Introduction
The purpose of nonequilibrium thermodynamics is to recognize ‘good’ equations. From a
physical perspective, this means that thermodynamically admissible evolution equations should
guarantee proper balance equations for energy and entropy. From a mathematical perspective,
this means that nonequilibrium thermodynamics should provide sufficient conditions for
proving the existence and uniqueness of solutions of evolution equations (whenever physically
appropriate).

There exists a large number of frameworks of nonequilibrium thermodynamics developed
by various groups working in different fields (mostly in physics and chemical engineering). In
the last 20 years, nonequilibrium thermodynamics has progressed significantly by clarifying the
relations between different frameworks, allowing us to recognize the common principles and the
most versatile approaches. A coherent appearance of the field is essential for the acceptance of
nonequilibrium thermodynamics as a useful tool in applications. The purpose of this paper is to
investigate the relationship between rational extended thermodynamics (RET) and the general
equation for the nonequilibrium reversible–irreversible coupling (GENERIC). A common feature
of these two frameworks is that they both are underpinned by statistical mechanics (see [1,2] for
GENERIC and §2 and references therein for RET).

Any framework of nonequilibrium thermodynamics has to contain the well-established
theories of equilibrium thermodynamics and linear irreversible thermodynamics [3] as limiting
cases. In particular, linear irreversible thermodynamics includes Onsager–Casimir symmetry
[4–6], which is a consequence of the behaviour of the evolution equations under time reversal. We
here restrict ourselves to thermodynamic frameworks based on differential evolution equations
for extended lists of variables (rather than memory functionals). Finding a list of variables that
allows us to formulate an autonomous set of evolution equations is a challenging first step in any
application of nonequilibrium thermodynamics. This step should be appreciated as an expression
of deep insight, not as an annoying closure problem [7]. Extended thermodynamics has been
developed since the 1960s, starting with pioneering work by Müller [8]. Originally, the motivation
for extended thermodynamics came from the moment method for the Boltzmann equation in the
kinetic theory of gases, and most applications were for gases. In the early work on extended
thermodynamics, the fluxes of conserved quantities have been chosen as additional variables,
and also fluxes of fluxes and even higher fluxes. Over time, two schools have emerged (see the
article by Jou in this theme issue), nowadays known as rational extended thermodynamics (RET)
[9] and extended irreversible thermodynamics (EIT) [10].

The restriction to the conserved quantities and fluxes appearing in balance equations as
variables is motivated by the fact that their convection behaviour is well-understood so that
one can focus entirely on the irreversible processes, which are usually associated with entropy
production. Convection conserves entropy, and guaranteeing the non-negativity of entropy
production by irreversible processes is a central element of any framework of nonequilibrium
thermodynamics.

The use of more general structural variables became possible by the generalization of
convection in terms of Hamiltonian dynamics with degenerate Poisson brackets. Nonequilibrium
thermodynamics based on Poisson and dissipative brackets has been developed since the 1980s,
starting with pioneering work by Grmela [11,12]. The so-called bracket formalism uses a single
generator (a free energy) and two brackets for generating reversible and irreversible dynamics
[13], whereas the GENERIC framework uses two generators (energy and entropy) and two
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brackets [14,15]. These two frameworks have been compared in detail in [16–19]. The conclusion
is that ‘whereas as far as macroscopic systems are concerned in all the investigated systems so far
a complete agreement between the one and two-generator formalisms is found, for microscopic
systems [considered on the level of configurational distribution functions] small but significant
differences exist with the existing evidence (by comparison to other theories) in favour of the
two-generator formalism’ [19].

Comparisons of GENERIC with EIT have been offered in Sect. V.A of [20] and Sect. 5.1.6 of [14].
A detailed comparison with a version of rational thermodynamics [21], in which Liu’s procedure
[22] for guaranteeing the non-negativity of entropy production is used, has been made in the
context of a simple discrete system [23].

2. Kinetic theory of rarefied gases
Before we present and compare two thermodynamic frameworks, RET and GENERIC, we
consider the kinetic theory of rarefied gases. In the subsequent developments, we need the
moment expansion obtained from the Boltzmann equation for rarefied gases for two reasons:
(i) the formulation of RET is guided by the structure of the moment expansion, and (ii) the
10 moment expansion serves as our specific example for a detailed comparison of RET and
GENERIC.

(a) Boltzmann equation
The basic quantity in kinetic theory is the particle distribution function f (r, t, c), where r and t are
the space and time variables, respectively, and c denotes the microscopic velocities of particles.
The distribution function is defined such that f (r, t, c)dcdr gives the number of gas particles in the
phase space cell dcdr at time t. The space–time evolution of the distribution function is determined
by the Boltzmann equation

∂f
∂t

+ ck
∂f
∂rk

= S (f , f
)

, (2.1)

where S(f , f ) denotes the Boltzmann collision term. For our purposes, it is sufficient to list its
most important properties (the full expression for S can be found in the literature [24–26]):
Mass, momentum and energy are conserved in a collision, the production of entropy is always
nonnegative (H-theorem), and in equilibrium the phase density is a Maxwellian distribution, i.e.

S = 0 �⇒ f = fM = ρ

m
1

√
2πθ

3 exp

[
−C2

2θ

]
, (2.2)

where m is the mass of a gas particle, ρ is the mass density, θ = kBT/m is the temperature in energy
units, kB is the Boltzmann constant, C = c − v is the peculiar velocity and v is the centre of mass
velocity. Owing to the details of the collision term, the Boltzmann equation is a nonlinear integro
differential equation for f . Its theory and solution are discussed in a wide body of literature, e.g.
[25,26]. Also, the laws of classical hydrodynamics—the Navier–Stokes and Fourier equations—
can be derived in the collision dominated regime, i.e. when the ratio of the mean free path of
the particles and the length scale of the process, known as the Knudsen number, is sufficiently
small [24–26].

Typically, one is not interested in the full details of the distribution function, but rather in some
physically relevant averages, in particular mass density ρ, momentum density M and energy
density ε, which are given by

ρ = m
∫

fdc, Mi = ρvi = m
∫

cifdc, ε = m
2

∫
c2fdc. (2.3)

General moments are symmetric tensors of the form

Fi1i2···in = m
∫

ci1 ci2 · · · cin fdc, (2.4)
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e.g. F = ρ, Fi = Mi = ρvi, Fkk = 2ε. Often, authors decompose the moments into their irreducible
parts (traces, trace-free tensors), and/or into moments of the peculiar velocity C [24]. This leads in
particular to the specific internal energy ε, which is related to the temperature θ , the temperature
tensor Θ and the heat flux vector q,

ε = 3
2
θ = m

2ρ

∫
C2fdc, Θij = m

ρ

∫
CiCjfdc, qi = m

2

∫
C2Cifdc. (2.5)

Note that θ = Θkk/3. Moreover P = ρΘ is the pressure tensor, and p = Pkk/3 = ρθ is the pressure
for the ideal gas.

The entropy density of the gas is given by

η = −kB

∫
f ln

f
y

dc, (2.6)

with a proper scaling constant y. Evaluation with the Maxwellian fM gives the well-known
equilibrium entropy density of the ideal gas

ηE = kB

m

⎧⎨
⎩1

2
ln

⎡
⎣
(

2πm2

h2

)3
m2θ3

ρ2

⎤
⎦+ 5

2

⎫⎬
⎭ ρ, (2.7)

where h is Planck’s constant. We emphasize that the Boltzmann equation has full thermodynamic
structure in the sense of GENERIC [14], and is Galilean invariant.

(b) Moment equations
Thermodynamic transport theories aim at a macroscopic description of processes, that is the main
interest is in the averages (moments) introduced above, and not in the details of the distribution
function. Hence, one is not interested in solving the Boltzmann equation, but rather in finding,
and then solving, equations for the moments themselves. Note that the macroscopic moments
describe collective behaviour of the particles, while on the level of the microscopic distribution
function, the individual particle behaviour is resolved.

Multiplication of the Boltzmann equation with mci1 ci2 · · · cin , (n = 0, 1, 2, 3, . . .) and subsequent
integration over the microscopic velocity results in a coupled system of moment equations of
balance law form

∂Fi1i2···in
∂t

+ ∂Fi1i2···ink

∂rk
= Πi1i2···in (n = 0, 1, 2, 3, . . .) , (2.8)

where

Πi1i2···in = m
∫

ci1 ci2 · · · cinSdc (2.9)

are the moments of the collision term. The resulting system of equations is infinite, since the flux
under the divergence is the next higher moment, i.e. it has one index more than the variable
under the time derivative. The infinite moment system is equivalent to the Boltzmann equation,
and, most notably for the present context, both have the proper GENERIC structure.

(c) Finite number of moments and Grad closure
The moment method was pioneered by Grad in 1949 [27]. In principle, the method proceeds
as follows: first, one chooses a meaningful finite subset FA = ∫

φAfdc of the Fi1i2···in as variables,
where A is a multi-index counting through the chosen variables, and φA are corresponding tensor
combinations of the microscopic velocity. The set φA must be chosen such that the resulting set of
equations is Galilei invariant.

Special cases that will be considered below are the five moment case, where F(5) = (F, Fi, Fkk),
and the 10 moment case, where F(10) = (F, Fi, Fij). Note that the decomposition of the FA into
explicit terms with velocity and central moments leads to alternative sets of variables; e.g. for
five and 10 moments one might use the variables u(5) = (ρ, vi, θ ) and u(10) = (ρ, vi, Θij).
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The corresponding moment equations, of the form

∂FA

∂t
+ ∂F̄Ak

∂rk
= ΠA, (2.10)

are not a closed system of equations for the variables FA, since they contain the fluxes F̄Ak and the
production terms ΠA (if the variable FA is of the form Fi1i2···in then the flux F̄Ak is given by Fi1i2···ink).
Closure relations, that is constitutive functions, are needed, to relate fluxes and productions to the
variables.

In kinetic theory, variables, fluxes and productions are all defined as integrals over the
distribution function f (r, t, c). Hence, the closure problem can be solved by construction of a
distribution function that is a functional of the variables, fcl(r, t, c) =F (FA(r, t), c) with

∫
φAfcldc =

FA. This leads to constitutive equations for fluxes F̄Ak = ∫
φAckfcldc = F̄Ak(FB(r, t)) and productions

ΠA = ∫
φAS(fcl, fcl)d c =PA(FB(r, t)) that are functionals of the variables as well. Typically, one

expects constitutive relations that link e.g. the flux F̄A(r, t) to the values of the variables FA and
some of their derivatives at the same point (r, t).

Grad [27,28] was the first to develop a closure method for moment equations with arbitrary
number of variables. If the set of variables is chosen well, the resulting set of transport equations
can describe gas processes outside the realm of classical hydrodynamics with sufficient accuracy,
such as thermal stresses, non-Fourier energy transport, etc.

Specifically, the Grad distribution function is constructed as a perturbation of the equilibrium
distribution,

fGrad = fM

(
1 −

∑
A

λAφA

)
, (2.11)

with coefficients λA(FB) determined from the linear system FA = ∫
φAfGraddc. Accordingly, the

constitutive relations for fluxes and productions are purely local, F̄Ak(FB(r, t)), ΠA(FB(r, t)). Hence,
non-local effects are accounted for through the moment equations, which form a set of first order
partial differential equations.

Since the φA are polynomials in c, the Grad distribution fGrad is not strictly positive. While
the Maxwellian suppresses large values of the velocity, so that the distribution is mostly
positive, it is nevertheless impossible to compute the corresponding entropy density from
−kB

∫
fGrad ln(fGrad/y)dc. With this, the Grad-type moment equations are not accompanied by

a proper entropy balance with strictly non-negative production. Not too far from equilibrium,
the equations are hyperbolic, but they lose hyperbolicity for sufficiently strong deviation from
equilibrium (e.g. Ruggeri determines a hyperbolicity radius around equilibrium [9]). This restricts
the applicability in nonlinear processes [29].

Linearized Grad-type moment equations have proper entropy inequality, and are stable [30].
One can say that the Grad method preserves enough of the properties of the Boltzmann equation
at least close to equilibrium. Even without a formal entropy inequality, the nonlinear Grad-type
equations are able to describe processes outside of the hydrodynamic regime sufficiently well.
However, the lack of structure—loss of 2nd law and hyperbolicity—might lead to breakdown of
solutions, or unphysical results for strong non-equilibria.

(d) Closure by entropy maximization
For the Grad closure, the distribution is a perturbation of the Maxwellian that assumes (very
small) negative values at large velocities, and hence the entropy (2.6) cannot be determined.
Maximization of entropy (MaxEnt) offers an alternative route to closure, that is in fact centred on
entropy, and produces a positive distribution function, and a proper form of the 2nd law [31,32].

The idea is to chose the least biased distribution that is compatible with the chosen variables,
which is obtained by maximizing the entropy (2.6) under the constraint of given values for the



6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190174

................................................................

variables FA. Taking care of the constraints by means of Lagrange multipliers ΛA, this results in a
distribution that is the exponential of a polynomial in c,

fmax = exp

[
−
∑

A

ΛAφA

]
. (2.12)

The thermodynamic structure for the resulting moment equations is just as for the
phenomenological theory of rational extended thermodynamics, that will be discussed further
below. The foundation in kinetic theory, however, provides additional insight and, more
importantly, limitations.

The distribution must asymptotically vanish for large velocity (else moments are infinite),
hence the highest power of c in the exponent must be of the form c2α . The set of variables must be
chosen accordingly, e.g. the requirement is fulfilled for F(5) = (F, Fi, Fkk) and F(10) = (F, Fi, Fij). It is
not fulfilled for F(13) = (F, Fi, Fij, Fkki) where the largest power is c2ci which is odd in velocity space,
and will lead to blow up unless the corresponding Lagrange multiplier Λkki vanishes. Therefore,
to incorporate stress tensor Fij and energy flux Fkki into a theory one must add at least one more
variable, which leads to a theory of 14 variables with F(14) = (F, Fi, Fij, Fkki, Fkkll). Extension to other
moment sets is straightforward.

Normally, one is interested in a closed form of transport equations, that is one would want to
determine explicit constitutive functions F̄Ak(FB) and ΠA(FB). However, apart from the five and
10 moment cases, integrals of the distribution (2.12) can only be obtained numerically. Owing to
the inherent difficulties, there are only few contributions that fully exploit the maximum entropy
distribution [33,34], and only the five and 10 field versions are evaluated without approximations.
A maximum entropy closure is highly desirable for the proper thermodynamic structure.
Moreover, results for one-dimensional kinetic equations show considerable improvement over
Grad closures with the same number of moments. Hence, it is quite unfortunate that the
mathematical details prevent the systematic development of MaxEnt moment systems with
arbitrary number of moments.

3. Rational extended thermodynamics
Methods of extended thermodynamics aim to describe processes far from equilibrium, which
are characterized by non-local effects and history dependence. While the classical approach to
include such effects is to allow higher gradients of hydrodynamic variables into constitutive
equations, RET extends the space of variables by adding nonequilibrium quantities, such
as stress tensor, heat flux, other fluxes and even fluxes of fluxes. The task of an extended
thermodynamic framework is to develop proper evolution equations for the additional variables,
so that thermodynamic structure is guaranteed.

Typically, these evolution equations are first order partial differential equations in space
and time. History dependence and non-locality are accounted for through these evolution
equations, and if longer history dependence, or wider non-locality, is required, one will
add more nonequilibrium variables and their evolution equations. Higher order constitutive
functions typically lead to problems such as instabilities, whereas the equations of extended
thermodynamics have good mathematical properties.

(a) Basic equations
RET is strongly motivated by the moment method as outlined above, but emphasizes the need
of a proper entropy law for all processes. While the moment method with entropy maximization
as outlined above is limited to ideal gases, RET imposes a rather similar structure, but aims at
describing other materials as well. A complete description of the theory is given in the monograph
by Müller & Ruggeri [9].
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Starting point is the choice of a set of N thermodynamic variables FA, A = 1, . . . , N, for which
one postulates transport equations in the balance law form (2.10). This balance law form appears
to be natural when considering matter within an arbitrary volume V, since one would expect
changes of a property FA within V effected by either a flux F̄Ak over the system boundary ∂V, or
due to a production ΠA—which can be positive or negative—within the volume. In kinetic theory,
as seen above, balance law form arises naturally from taking moments of the Boltzmann equation.
However, strict balance law form might be lost in model reduction methods, e.g. when elements
of equations are weighted differently, and removal of some terms from the equations changes
their structure. An example for this is the application of the order of magnitude method to find
a condensed set of equations for hard sphere molecules in [35], where the resulting equations
(written for peculiar moments) cannot be cast in balance law form.

Next, similar to the Grad and MaxEnt closures, RET demands constitutive relations which
are fully local in space and time, that is the fluxes and productions at (r, t) depend only on the
variables themselves at the same space–time location,

F̄Ak (r, t) = F̄Ak (FB (r, t)) , ΠA (r, t) = ΠA (FB (r, t)) . (3.1)

The constitutive equations are restricted by the entropy principle, which postulates the
existence of an entropy obeying the additional balance law

∂η

∂t
+ ∂Φk

∂rk
= σ ≥ 0, (3.2)

where η(FB) is the entropy density, Φk(FB) is the entropy flux and σ (FB) is the entropy production.
That is, also entropy flux and productions are given by local constitutive laws. The entropy
production must be strictly non-negative for all thermodynamic processes, i.e. all solutions of
the balance laws for the FA. Evaluation with Liu’s lemma [22] introduces Lagrange multipliers
ΛA(FB) which relate entropy and variables as

dη = ΛAdFA, dΦk = ΛAdF̄Ak, σ = ΛAΠA ≥ 0. (3.3)

Accordingly,
∂η

∂FA
= ΛA and

∂Φk

∂F̄Ak
= ΛA (3.4)

and hence we have the symmetry relations

∂2η

∂FA∂FB
= ∂ΛA

∂FB
= ∂ΛB

∂FA
and

∂2Φk

∂F̄Ak∂F̄Bk
= ∂ΛA

∂F̄Bk
= ∂ΛB

∂F̄Ak
. (3.5)

Moreover, RET has also the requirement of convexity,

− ∂2η

∂FA∂FB
is positive definite (3.6)

(convexity as concept and name comes from mathematics, where researchers use the
mathematical entropy density −η instead of the physical entropy density η). Convexity ensures
that the transformation FA(ΛB) is invertible to ΛA(FB), and also is related to entropy assuming a
maximum at equilibrium.

Using a Legendre transform to switch to the Lagrange multipliers as variables yields

∂FA

∂ΛB

∂ΛB

∂t
+ ∂F̄Ak

∂ΛB

∂ΛB

∂rk
= ΠA (3.7)

and due to symmetry (3.5) and convexity (3.6), this is a symmetric hyperbolic system with
convex extension [36]. The mathematical literature proves that systems of this kind have desirable
properties, most importantly well-posedness of the initial boundary value problem. Finally we
note that RET requires Galilean invariance of the equations, which leads to a clear identification
of the role of velocity in the resulting equations.
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The above just lists the required structure, which holds also for moment equations with
entropy maximization as discussed above. The difficulty is to fill all this with meaning, by finding
explicit sets of equations, for which all elements (fluxes, productions, Lagrange multipliers) are
explicitly known.

While the RET structure is in principle open to arbitrary materials, most applications concern
ideal gases, including quantum gases such as phonons and photons [9]. For these, entropy
maximum closure in kinetic theory has the very same structure, with the Lagrange multipliers
from maximization and the Liu procedure being identical [31].

We have already discussed the difficulties to perform the entropy maximum closure in kinetic
theory for more than 10 moments. While the evaluation of the phenomenological RET structure
proceeds quite differently from the kinetic theory approach—where one has to integrate a
distribution function—it is also quite challenging, and for classical monatomic gases there is
no RET system above the 10 moment case that has the full structure as outlined above. Further
examples, including chemical reactions, radiation and viscoelasticity, can be found in [37].

All RET systems with 13, 14 and more moments discussed, e.g. in [9,38], are, in fact,
approximations and do not have the full RET structure. Rather, these approximations are similar,
if not identical, to Grad-type moment systems, with the same limitations as these, in particular
only the linearized equations have an entropy, and hyperbolicity is lost for larger deviations from
equilibrium states.

The equivalence between RET for the ideal gas and maximum entropy closure was never fully
exploited to discuss feasibility of the macroscopic approach. For instance, a MaxEnt system with
13 variables is impossible due to blow up of the distribution function as discussed above. From
this, one would guess that the full RET approach for 13 moments (or any other set with odd
closure) is impossible as well. On the other hand, the (somewhat limited) success in applying the
MaxEnt closure by fitting of closure relations that account for the singularities indicates that a RET
closure might be possible—at least for moment sets for which the MaxEnt distribution remains
integrable.

(b) Comments
RET and MaxEnt approach have highly desirable properties, in particular the mathematical
structure guarantees well-posed equations with entropy. However, only very few systems are
available that have this structure, and all of these are too simple. For example, the 10 moment
case discussed further below includes viscous stresses but no heat transfer.

All known systems of extended thermodynamics, or moment methods, with larger sets of
variables are approximations. They might give spurious results if used outside their—not well-
defined—range of applicability, or might change their mathematical properties. Nevertheless,
these theories describe nonequilibrium process, with history dependence and non-localities, very
well, in excellent agreement with experiments, or solutions of the full Boltzmann equation [9].

As approximations, they obviously inherit some of the structure of the stricter theories, but
outside the linearized case the extent of this is not well understood. We can say that one sacrifices
rigorous mathematical and thermodynamic structure for the sake of having powerful tools for
the description of nonequilibrium processes.

Ideally, one would hope to find transport equations that combine accurate predictions and
proper thermodynamic structure. With the strict RET and MaxEnt formalism unattainable, we
will look now at GENERIC, in the hope that this general framework offers more flexibility to
attain this goal.

4. GENERIC
The basic idea of GENERIC is to generate irreversible dynamics by the entropy, just like
Hamiltonian dynamics, which is considered as the prototype of reversible dynamics, is generated
by the energy. The assumption of energy conservation under irreversible dynamics is matched
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by assuming entropy conservation under reversible dynamics. Entropy production can arise only
from irreversible processes, and the amount of entropy production can be specified in terms of a
friction matrix or a dissipation potential [20,39].

(a) Basic equations
The GENERIC framework is based on the following general equation for the nonequilibrium
reversible–irreversible coupling:

dx
dt

= L
δE
δx

+ M
δS
δx

, (4.1)

where x represents a set of independent variables that allows for an autonomous description
of a given nonequilibrium system. For local field theories, the total energy E and entropy S as
functions of x are given in terms of the corresponding densities,

E =
∫

e dr, S =
∫

η dr. (4.2)

The linear operators, or matrices, L and M, which can depend on x, are known as the
Poisson and friction matrices, respectively. Equation (4.1) is supplemented by the complementary
degeneracy requirements

L
δS
δx

= 0 (4.3)

and

M
δE
δx

= 0, (4.4)

which are strong formulations of the conservation of entropy (energy) by reversible (irreversible)
dynamics. Further general properties of L can be discussed most conveniently in terms of the
Poisson bracket

{A, B} = δA
δx

· L
δB
δx

, (4.5)

where A, B are sufficiently regular, real-valued functions defined on the space of independent
variables and the dot indicates a canonical product.

Further conditions for L can now be stated as the antisymmetry property

{A, B} = −{B, A}, (4.6)

the product or Leibniz rule
{AB, C} = A{B, C} + B{A, C}, (4.7)

and the Jacobi identity
{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0, (4.8)

where C is another sufficiently regular function on the state space. These properties are well
known from the Poisson brackets of classical mechanics, and they express the essence of reversible
dynamics. Contrary to the case of classical mechanics, the Poisson bracket for dissipative systems
must be degenerate so that the degeneracy requirement (4.3) for the entropy can be fulfilled.

The most important further requirement for the friction matrix M is positive-semidefiniteness.
This requirement is a strong formulation of the second law of thermodynamics as it, together with
the degeneracy requirement (4.3), implies the inequality

dS
dt

= δS
δx

· M
δS
δx

≥ 0. (4.9)

Whereas the Poisson matrix L clearly needs to be antisymmetric, the symmetry properties
of M are less obvious. In most applications, M can be assumed to be symmetric. However,
in view of the Onsager symmetry and Casimir antisymmetry occurring in linear irreversible
thermodynamics [3–6], we expect that M can also be antisymmetric (a detailed discussion of
the relation between the Onsager–Casimir symmetry of linear irreversible thermodynamics and
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the symmetry properties of the friction matrix M of GENERIC can be found in Section 3.2.1 of
[14]). The possibility of an antisymmetric M has actually been used in the context of slip and of
turbulence [40].

In general, the friction matrix incorporates a number of distinct dissipative processes. It is
then helpful to write the friction matrix as the sum of separate contributions associated with
the individual dissipative processes. If each contribution possesses the properties of positive-
semidefiniteness, energy degeneracy and symmetry/antisymmetry, then also the total friction
matrix is positive-semidefinite and leads to energy conservation.

(b) Comments
An important strength of the GENERIC framework is the flexibility in the choice of variables.
This flexibility is made possible by using Poisson brackets and Hamiltonians in the formulation
of reversible dynamics, so that one does no longer need the guidance from balance equations
to formulate reversible dynamics. Neither is one restricted to considering only convection as a
reversible process. The reward of the flexibility in the choice of variables is the enormous number
and variety of problems that can be and have been studied within the GENERIC framework (see
Appendix E of [14] or [41] for reviews).

The Jacobi identity (4.8), which is a highly restrictive condition for formulating proper
reversible dynamics, expresses the time-structure invariance of Poisson brackets [14,42]. More
precisely, if two observables A and B are evolved in time, their time-dependent Poisson bracket
also satisfies the evolution equation for an observable. The Jacobi identity is deeply related to the
proper implementation of the symmetry properties of a system. Finally, the Jacobi identity may
be considered as an integrability condition guaranteeing that the convection mechanism, or other
reversible effects, can be integrated up consistently from small to large deformations.

Numerical methods that focus on the proper treatment of entropy can have significant
advantages, as has been illustrated for the Lattice Boltzmann method [43,44]. In the context of
13 moment equations, it has been shown that the numerical solution of shock wave problems
[45] and the formulation of boundary conditions [46] (see also [30]) can benefit enormously if
the existence of an entropy is exploited properly. The search for GENERIC integrators, which
preserve (as much as possible of) the GENERIC structure under time discretization in the same
spirit as symplectic integrators preserve the Hamiltonian structure, is still in its beginning (see
[47, and references therein, 48]).

5. Comparison
The comparison of RET and GENERIC is restricted to situations in which RET is actually
applicable. Moment equations are hence the natural choice for our comparison. As both
approaches rely on the existence of an entropy functional, they both have the problem of
expressing the entropy density in terms of moment variables. This can be done most naturally
by introducing particle distribution functions parametrized by the moments, as discussed in the
context of closures in §2c. A strategy for the successful construction of entropies for moment
equations, which is based on considering general rather than only Cartesian vector and tensor
transformation behaviour, has been developed in [49–52]. The close relationship between the
Lagrange multipliers of RET and the entropy gradients of GENERIC should be noted.

The most challenging problem in applying GENERIC often is the identification of a valid
Poisson bracket to represent the reversible contribution to dynamics. In the case of moment
equations, the involvement of velocities in all moments makes it quite hopeless to find a Poisson
bracket that expresses the convection mechanism implied by the Boltzmann equation. As the
strategy for overcoming this problem is the main innovation of the present paper, we discuss
some general ideas for describing convection before we enter a more detailed comparison. The
matching of relaxation terms turns out to be a relatively simple exercise because there is much
less thermodynamic structure in them.
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(a) Convection mechanism
The convection mechanism expressed by the left-hand side of the balance equations (2.8) is neither
of the upper convected nor of the lower convected type frequently used in rheological modelling,
for both of which it is known that they can readily be expressed by means of well-known Poisson
brackets (see Section 2.3.1 of [14]). The discrepancy looks minor but is crucial: either there is a
sign problem or the role of the velocity gradient tensor and its transpose is interchanged. These
differences keep us from finding a Poisson bracket even for the simplest case of 10 moments,
where anisotropic Gaussians are the perfect trial functions for the particle distribution function
(contrary to what was said on p. 309 of [14]).

The novel strategy that we propose in this paper is to shuffle the deviations from an admissible
convection mechanism from the reversible to the irreversible contribution of GENERIC. Of
course, these irreversible ‘convective corrections’ should not produce entropy and should hence
be realized through an antisymmetric contribution to the friction matrix, a contribution associated
with Casimir symmetry.

For vectors in position space, it is natural to be convected by an upper convected mechanism,
whereas the lower convected mechanism is natural for momentum vectors. As we are dealing
with moments of the momentum distribution, we begin with the Poisson bracket providing lower
convected derivatives. We then realize that the deviation from the Boltzmann-type convection
mechanism can be described in terms of the vorticity (this simplicity would not arise if we had
started from upper convected derivatives). The details of this construction are next elaborated
for the 10 moment equations. It can be generalized in a straightforward way to the 13 moment
equations (as we shall elaborate elsewhere).

(b) 10 moment equations
As seen from RET, or entropy maximization, the 10 moment equations in full balance law form
for the variables ρ, ρvi, ρ(vivj + Θij) read

∂ρ

∂t
+ ∂ρvk

∂rk
= 0,

∂ρvi

∂t
+ ∂ρ (vivk + Θik)

∂rk
= 0

and
∂ρ
(
vivj + Θij

)
∂t

+ ∂ρ
(
vivjvk + 3Θ(ijvk)

)
∂rk

= −ρ

τ

(
Θij − θδij

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

where the production term arises from the Boltzmann equation for Maxwell molecules, or from
the Bhatnagar–Gross–Krook model for the collision term in the Boltzmann equation, and the
round brackets around indices indicates symmetrization in these indices. The first two equations
are continuity and momentum balance equations, and the third is the evolution equation for
momentum flux. The energy balance is included as the trace of the last equation. If one sets
Θij = θδij and considers only the trace of the last equation the above reduce to the Euler equations
for an ideal gas, which is the five moment version of RET.

For studying the above equations within GENERIC, we express the 10 moment equations in
terms of ρ, M = ρv, Θ , where they become

∂ρ

∂t
= − ∂

∂r
· (vρ), (5.2)

∂M
∂t

= − ∂

∂r
· (vM + ρ Θ) (5.3)

and
∂Θ

∂t
= −v · ∂

∂r
Θ − κ · Θ − Θ · κT − 1

τ
(Θ − θ 1) . (5.4)

Here, we have introduced the velocity gradient tensor with components κjk = ∂vj/∂rk. In the
second-moment equation (5.4), we can readily distinguish between convection terms (involving
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v or κ) and relaxation terms (involving the relaxation time τ ). Note that the trace of Θ , as a
thermodynamic variable, is exempt from relaxation.

For an ideal gas, the energy is generally given in terms of zeroth, first and second moments, so
that we always have

E =
∫

V

(
M2

2ρ
+ ρ

2
tr Θ

)
d3r. (5.5)

The case of 10 moments is particularly simple because the maximum entropy principle leads to
an anisotropic Gaussian probability distribution in momentum space. The corresponding entropy
is given by the following generalization of (2.7),

S = kB

m

∫
V

⎧⎨
⎩1

2
ln

⎡
⎣
(

2πm2

h2

)3
m2

ρ2 det Θ

⎤
⎦+ 5

2

⎫⎬
⎭ ρ d3r. (5.6)

These expressions for the energy and entropy lead to the gradients

δE
δx

=

⎛
⎜⎝

3
2 θ − 1

2 v2

v
1
2 ρ1

⎞
⎟⎠ ,

δS
δx

=

⎛
⎜⎝

η
ρ

− kB
m

0
1
2 ρ kB

m Θ−1

⎞
⎟⎠ , (5.7)

where η is the entropy density, that is, the integrand in (5.6).
From the perspective of RET, the 10 moment equations have a simple and natural form.

We next consider the problem from the perspective of GENERIC. As already mentioned in the
previous section, if we express the convection mechanism in (5.4) in terms of a Poisson operator
L, we are faced with an unpleasant surprise: it does not satisfy the Jacobi identity. The Jacobi
identity allows only two options for the convection of tensors, which are associated with upper
and lower convected time derivatives (see Sect. 2.3.1 of [14] for a detailed discussion). Differences
of position vectors are naturally associated with upper convective behaviour (any type of flow or
deformation implies transformations for all the points occupied by a material [53,54], and hence
also for all the vectors connecting two points), whereas lower convected behaviour is the natural
choice for momentum vectors (this is the complementary choice in the sense that the contraction
of a pair of vectors with upper and lower convective behaviour is convected as a scalar). To
prepare a valid GENERIC formulation, we rewrite the second-moment equation (5.4) in the form

∂Θ

∂t
= −v · ∂

∂r
Θ − κT · Θ − Θ · κ + ω · Θ − Θ · ω − 1

τ
(Θ − θ 1) , (5.8)

where ω = κT − κ is the vorticity tensor. The terms involving v or κ now correspond to a lower
convected derivative so that the corresponding Poisson operator in index notation,

L = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
∂

∂rk
ρ 0

ρ
∂

∂ri

∂

∂rk
Mi + Mk

∂

∂ri
−∂Θkl

∂ri
+ 2

∂

∂r(k
Θl)i

0
∂Θij

∂rk
+ 2Θk(i

∂

∂rj)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.9)

is known to satisfy the Jacobi identity (see Table 2.1 of [14]). We use the convention that the indices
i, j refer to matrix multiplications from the left side, whereas k, l refer to matrix multiplications
from the right side.

Our next goal is to represent the terms involving ω in (5.8), which describe the mismatch
between moment convection and lower convective behaviour, as an irreversible contribution
to GENERIC. We construct an antisymmetric matrix Mcc (‘cc’ refers to convective corrections)
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because we do not expect these convective effects to be associated with entropy production. The
choice

Mcc = 2m
kB

⎛
⎜⎜⎜⎝

0 0 0

0 0
∂

∂rs
θ [δi(kΘl)s − Θi(kδl)s]

0 θ [Θs(iδj)k − δs(iΘj)k]
∂

∂rs

1
3ρ

(
[ω, Θ]ijΘkl − Θij[ω, Θ]kl

)

⎞
⎟⎟⎟⎠ , (5.10)

with the commutator [ω, Θ] = ω · Θ − Θ · ω, (i) provides the desired modification of (5.8), (ii)
leaves the mass and momentum balances unchanged, (iii) implies energy degeneracy as a
strong formulation of energy conservation, and (iv) does not cause any contribution to entropy
production.

Finally, the relaxation term involving τ in (5.8) needs to be reproduced. As the derivative of
the entropy (5.6) is proportional to Θ−1, this requires a contribution Mrelax to the M matrix that is
quadratic in Θ . The following symmetric, positive-definite, and energy conserving contribution
to the friction matrix reproduces the desired linear relaxation term,

Mrelax = 2m
3τkBρ

1

1 − (1/9) trΘ trΘ−1

⎛
⎜⎝ 0 0 0

0 0 0
0 0 (Θij − θδij)(Θkl − θδkl)

⎞
⎟⎠ . (5.11)

Note that, in our physically guided formulation, linear relaxation is not produced by a
quadratic entropy and a constant contribution to the M matrix. As the denominator of the
prefactor in (5.11) is somewhat artificial, it might actually be more natural to consider nonlinear
relaxation mechanisms.

For the 10 moment equations, we find perfect agreement between RET and GENERIC. As
mentioned before, the full RET structure cannot be achieved for 13 or 14 moments. It can be
shown, however, that the matrices Mcc and Mrelax can be generalized to the case of 13 moments.
Further important terms in the 13 moment equations, in particular those required for reproducing
Fourier’s law for the heat flux in the limit of fast relaxation, can be incorporated by an additional
antisymmetric contribution to the friction matrix. The generalization of the entropy to the 13
moment case has been discussed in [49–51]. The details of the GENERIC formulation of 13
moment equations will be presented elsewhere.

(c) Regularized moment equations
Most extended theories lead to first order partial differential equations which form a hyperbolic
system (in the range of applicability). Hyperbolic systems have finite speed of propagation of
disturbances, and in the early days of RET, these finite speeds were touted as describing proper
physics [8,9], since infinite speeds of propagation should be impossible. However, the Boltzmann
equation for classical particles allows infinite particle speeds, hence infinite speed of heat transfer
as described through Fourier’s law is not in contradiction. Indeed, the finite propagation speeds
in RET systems are artefacts of the theories, and not a picture of actual physics.

Processes in which these finite speeds play a significant role, e.g. the resolution of shocks, pose
a significant challenge, due to the occurrence of unphysical sub-shocks [55]. These sub-shocks
are not encountered for regularized moment equations, which effectively replace the strictly
local closure such that fluxes and productions depend at most on first order space derivatives
of the variables FA. Detailed accounts of the methods used to regularize a Grad-moment
system can be found in [24,56,57]. Effectively, the regularizing terms are remnants of higher
order moment equations, which are reduced by means of scaling arguments based on Knudsen
number.

The thermodynamic structure, or the lack thereof, of the regularized moment equations is
similar to the underlying Grad models: a proper second law exists only for the linear case [30],
but the equations are highly meaningful also for nonlinear settings, including shocks, where they
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produce smooth structures [58]. An entropy law for the regularized 13-moment equations in the
nonlinear case is possible after adding non-trivial nonlinear terms [52].

From the perspective of GENERIC, regularization can readily be implemented as a dissipative
process by means of a symmetric friction matrix that contains two partial derivatives. This type
of friction matrices is very common in the modelling of transport processes where second-order
partial differential equations are ubiquitous.

6. Conclusion and challenges
We have demonstrated that RET is a special case of GENERIC for the special choice of variables
inspired by the moment equations obtained from the Boltzmann equation for rarefied gases. This
is not only true for the infinite moment hierarchy, which is equivalent to the Boltzmann equation,
but also for properly truncated moment equations. In general, the GENERIC closures are different
from the ones considered in the literature. The usefulness of these new truncations remains to be
explored, most importantly, for the 13 moment equations.

The essential new step in recognizing 10 (or 13) moment equations as GENERIC is to allow
for irreversible but non-entropy-producing contributions to convection. In the context of linear
irreversible thermodynamics, this option is associated with Casimir symmetry, which is perfectly
natural. These complications in the convection mechanism arise because all variables are related
to moments of velocity rather than conformational properties. There might exist a deep analogy
between moment equations and the problem of turbulence. The non-entropy-producing but
irreversible energy cascade in turbulence is related to vortices in the velocity on different length
scales. In the moment hierarchy, we have a number of velocity moments, which cover couplings
and relaxation phenomena over a range of different scales. In both cases, all variables are related
to velocities so that the convection mechanism becomes extremely involved. Both cases involve
vorticity in a crucial way. Details of this analogy remain to be elaborated.

The fundamental difference between RET and GENERIC lies in the flexibility in the choice of
variables. Simple recipes for finding a list of good variables, in terms of which a given problem
of interest can be described by autonomous evolution equations, may seem appealing. However,
flexibility in choosing the variables and the understanding associated with the choice of variables
are essential features of modern nonequilibrium thermodynamics. Considering its roots, it is
natural that the main area of application of RET is the theory of gases. The application of RET to
rarefied and dense gases is the topic of the article by Arima, Ruggeri and Sugiyama in this theme
issue. One should note, however, that the first 50 years of rheology have been ruled by differential
constitutive equations for the stress tensor, which is the momentum flux. By adding the heat flux,
even nonisothermal rheology can be based on flux variables. Also the equations for relativistic
hydrodynamics are usually based on flux variables [59–66] (see also article by Romenski, Peshkov,
Dumbser and Fambri in this theme issue).

If the ideas of the present work are generalized to relativistic gases, this suggests the
natural implication that the hydrodynamics of relativistic gases is fundamentally different from
the hydrodynamics of relativistic liquids (in the nonrelativistic case, the universal form of
hydrodynamics for all kinds of fluids is dictated by conservation laws). The hydrodynamics of
gases requires the presence of Casimir-type irreversible convection, whereas the hydrodynamics
of liquids does not require that [62,63]. The convection mechanism for liquids is simpler than
for gases because the transport properties result from interactions in real space (even after
equilibration in momentum space). These observations remain to be elaborated in detail.
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