
entropy

Article

Entropy and the Second Law of
Thermodynamics—The Nonequilibrium Perspective

Henning Struchtrup

Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; struchtr@uvic.ca

Received: 31 May 2020; Accepted: 18 July 2020; Published: 21 July 2020
����������
�������

Abstract: An alternative to the Carnot-Clausius approach for introducing entropy and the second
law of thermodynamics is outlined that establishes entropy as a nonequilibrium property from the
onset. Five simple observations lead to entropy for nonequilibrium and equilibrium states, and its
balance. Thermodynamic temperature is identified, its positivity follows from the stability of the rest
state. It is shown that the equations of engineering thermodynamics are valid for the case of local
thermodynamic equilibrium, with inhomogeneous states. The main findings are accompanied by
examples and additional discussion to firmly imbed classical and engineering thermodynamics into
nonequilibrium thermodynamics.

Keywords: 2nd law of thermodynamics; entropy; nonequilibrium; entropy generation; teaching
thermodynamics

Highlights

• 2nd law and entropy based on 5 simple observations aligning with daily experience.
• Entropy defined for nonequilibrium and equilibrium states.
• Positivity of thermodynamic temperature ensures dissipation of kinetic energy, and stability of

the rest state.
• Global balance laws based on assumption of local thermodynamic equilibrium.
• Agreement with Classical Equilibrium Thermodynamics and Linear Irreversible Thermodynamics.
• Entropy definition in agreement with Boltzmann’s H-function.
• Discussion of thermodynamic engines and devices, incl. Carnot engines and cycles, only after the

laws of thermodynamics are established.

Preamble

This text centers on the introduction of the 2nd Law of Thermodynamics from a small number of
everyday observations. The emphasis is on a straight path from the observations to identifying the
2nd law, and thermodynamic temperature. There are only few examples or applications, since these
can be found in textbooks. The concise presentation aims at the more experienced reader, in particular
those that are interested to see how the 2nd law can be introduced without Carnot engines and cycles.

Nonequilibrium states and nonequilibrium processes are at the core of thermodynamics, and the
present treatment puts these at center stage—where they belong. Throughout, all thermodynamic
systems considered are allowed to be in nonequilibrium states, which typically are inhomogeneous in
certain thermodynamic properties, with homogeneous states (for the proper variables) assumed only
in equilibrium.

The content ranges from simple observation in daily life over the equations for systems used
in engineering thermodynamics to the partial differential equations of thermo-fluid-dynamics;
short discussions of kinetic theory of gases and the microscopic interpretation of entropy are included.
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The presentation is split into many short segments to give the reader sufficient pause for
consideration and digestion. For better flow, some material is moved to the Appendix which provides
the more difficult material, in particular excursions into Linear Irreversible Thermodynamics and
Kinetic Theory.

While it would be interesting to compare the approach to entropy presented below to what was
or is done by others, this will not be done. My interest here is to give a rather concise idea of the
introduction of entropy on the grounds of nonequilibrium states and irreversible processes, together
with a smaller set of significant problems that can be tackled best from this viewpoint. The reader
interested in the history of thermodynamics, and other approaches is referred to the large body of
literature, of which only a small portion is referenced below.

1. Intro: What’s the Problem with the 2nd Law?

After teaching thermodynamics to engineering students for more than two decades (from teaching
assistant to professor) I believe that a lot of the trouble, or the conceived trouble, with understanding
of the 2nd law is related to how it is taught to the students. Most engineering textbooks introduce
the 2nd law, and its main quantity, Entropy, following the classical Carnot-Clausius arguments [1]
using reversible and irreversible engines [2–5]. To follow this approach properly, one needs a lot of
background on processes, systems, property relations, engines and cycles. For instance in a widely
adopted undergraduate textbook [2], the mathematical formulation of the 2nd law—the balance law
for entropy—appears finally on page 380, more than 300 pages after the conservation law for energy,
which is the mathematical expression of the 1st Law of Thermodynamics.

Considering that the full discussion of processes, systems, property relations, engines and cycles
requires both, the 1st and the 2nd law, it should be clear that a far more streamlined access to the body
of thermodynamics can be achieved when both laws—in their full mathematical formulation—are
available as early as possible. The doubtful reader will find some examples in the course of this treatise.
Some authors are well aware of this advantage, which is common in Germany [6], but seems to come
only slowly to the North-American market [7,8].

Early introduction of the 2nd law cannot be based on the Carnot-Clausius argument using engines
and cycles, but must find other ways. In References [6,7] this problem is solved by simply postulating
the 2nd law, and then showing first that is makes perfect sense, by analyzing simple systems, before
using it to find less intuitive results, such as the limited efficiency of heat engines, and any other results
of (applied) thermodynamics.

The problem with the postulative approach is that assumptions and restrictions of the equations
are not always clearly stated. While the 1st law of thermodynamics is universally valid, this is not
the case for most formulations of the 2nd law of thermodynamics. The presentation below aims at
introducing the 2nd law step by step, with clear discussion of all assumptions used.

2. Outline: Developing the 2nd Law

Below, I will develop the 2nd law from a small number of observations. This approach is also
outlined in my undergraduate textbook [8], but with some shortcuts and omissions that I felt are
required for the target audience, that is, students who are exposed to the topic for the first time.
The presentation below is aimed more at the experienced reader, therefore when it comes to the
2nd law, I aim to avoid these shortcuts, and discuss several aspects in more depth, in particular the
all-important question of nonequilibrium states, while reducing the discussion of basic elements like
properties and their relations as much as possible.

Many treatments of thermodynamics claim that it can only make statements on equilibrium states,
and cannot deal with nonequilibrium states and irreversible processes. Would this be true, simple
thermodynamic elements such as heat conductors or irreversible turbines could not be treated in the
context of thermodynamics.
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Indeed, classical [9–11] or more recent [12–14] treatments focus on equilibrium states, and avoid
the definition of entropy in nonequilibrium.

However, in his famous treatment of kinetic theory of gases, Boltzmann gave proof of the
H-theorem [15–17], which can be interpreted as the 2nd law of thermodynamics for ideal gases in any
state. Entropy and its balance follow directly by integration from the particle distribution function and
the Boltzmann equation, and there is no limitation at all to equilibrium states. Of course, for general
nonequilibrium states one cannot expect to find a simple property relation for entropy, but this does not
imply that entropy as an extensive system property does not exist. All frameworks of nonequilibrium
thermodynamics naturally include a nonequilibrium entropy [18–22].

The arguments below focus on the approach to equilibrium from nonequilibrium states. Entropy
is introduced as the property to describe equilibration processes, hence is defined for general
nonequilibrium states.

Luckily, most engineering problems, and certainly those that are the typical topics in engineering
thermodynamics, can be described in the framework of local thermodynamic equilibrium [18], where
the well-known property relations for equilibrium are valid locally, but states are inhomogeneous
(global equilibrium states normally are homogeneous in certain properties, see Section 40). Textbook
discussions of open systems like nozzles, turbines, heat exchangers, and so forth, rely on this
assumption, typically without explicitly stating this fact [2–8] . It is also worthwhile to note that local
thermodynamic equilibrium arises naturally in kinetic theory, when one considers proper limitations
on processes, viz. sufficiently small Knudsen number, see Appendix D.5 and References [16,17].

Obviously, the 2nd law does not exist on its own, that is for its formulation we require some
background—and language—on systems, processes, and the 1st law, which will be presented first,
as concisely as possible, before we will embark on the construction of the balance law for entropy,
the property relations, and some analysis of its consequences. For completeness, short sections on
Linear Irreversible Thermodynamics and Kinetic Theory of Gases are included in the Appendix.

For better accessibility, in most of the ensuing discussion we consider closed systems, the extension
to open systems will be outlined only briefly. Moreover, mixtures, reacting or not, are not included,
mainly for space reasons. Larger parts of the discussion, and the figures, are adapted from my textbook
on technical thermodynamics [8], albeit suitably re-ordered, tailored, and re-formulated. The interested
reader is referred to the book for many application to technical processes in open and closed systems,
as well as the discussion of inert and reacting mixtures.

In an overview paper [13] of their detailed account of entropy as an equilibrium property [12],
Lieb and Yngvason state in the subtitle that

“The existence of entropy, and its increase, can be understood without reference to either statistical
mechanics or heat engines.”

This is the viewpoint of this contribution as well, hence I could not agree more. However,
these authors’ restriction of entropy to equilibrium states is an unnecessary limitation. The analysis
of irreversible processes is central in modern engineering thermodynamics, where systems in
nonequilibrium states must be evaluated, and the entropy generation rate is routinely studied
to analyze irreversible losses, and to redesign processes with the goal of entropy generation
minimization [8,23]. Hence, while the goal appears to be the same, the present philosophy differs
substantially from authors who restrict entropy to equilibrium states.

3. The 2nd Law in Words

In the present approach, the 2nd law summarizes everyday experiences in a few generalized
observations which are then used to conclude on its mathematical formulation, that is, the balance law
for entropy. Only the mathematical formulation of thermodynamics, which also includes the 1st law
and property relations, allows to generalize from simple experience to the unexpected.
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Below, the observations used, and the mathematical formulation of the 2nd law, are summarized
as an introduction of what will come for the thermodynamically experienced reader, and for future
reference for the newcomer. The definitions of terms used, explanations of the observations, and their
evaluation will be presented in subsequent sections

The observation based form of the 2nd law reads:

Basic Observations

Observation 1. A closed system can only be manipulated by heat and work transfer.

Observation 2. Over time, an isolated thermodynamic system approaches a unique and stable equilibrium state.

Observation 3. In a stable equilibrium state, the temperature of a thermally unrestricted system is uniform.

Observation 4. Work transfer is unrestricted in direction, but some work might be lost to friction.

Observation 5. Heat will always go from hot to cold by itself, but not vice versa.

The experienced reader should not be surprised by any of these statements. The second, third and
fifth probably are most familiar, since they appear as input, or output, in any treatment of the 2nd
law. The first and the fourth are typically less emphasized, if stated at all, but are required to properly
formulate the transfer of entropy, and to give positivity of thermodynamic temperature.

Careful elaboration will show that these observations, with the assumption of local
thermodynamic equilibrium, will lead to the 2nd law for closed systems in the form

dS
dt
−∑

k

Q̇k
Tk

= Ṡgen ≥ 0 and T > 0 . (1)

Here, S is the concave entropy of the system, Q̇k is energy transfer by heat over the system boundary
at positive thermodynamic temperature Tk, and Ṡgen is the non-negative generation rate of entropy
within the system, which vanishes in equilibrium.

4. Closed System

The first step in any thermodynamic consideration is to identify the system that one wishes to
describe. Any complex system, for example, a power plant, can be seen as a compound of some—or
many—smaller and simpler systems that interact with each other. For the basic understanding of the
thermodynamic laws it is best to begin with the simplest system, and study more complex systems
later as assemblies of these simple systems.

The simplest system of interest, and the one we will consider for most of the discussion, is the
closed system where a simple substance (i.e., no chemical changes) is enclosed by walls, and no mass
flows over the system boundaries, for example, the piston-cylinder device depicted in Figure 1.

_Wpiston

_Wpropeller

_Q

E

Figure 1. Closed system with energy E exchanging work Ẇ and heat Q̇ with its surroundings.
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There is only a small number of manipulations possible to change the state of a closed system,
which are indicated in the figure—the volume of the system can be changed by moving the piston,
the system can be stirred with a propeller, and the system can be heated or cooled by changing the
temperature of the system boundary, as indicated by the heating (or cooling) coil. Another possibility
to heat or cool the system is through absorption and emission of radiation, and transfer of radiation
across the system boundary (as in a microwave oven)–this is just another way of heating. One could
also shake the system, which is equivalent to stirring.

The statement that there is no other possible manipulation of the system than these is formulated
in Observation 1.

These manipulative actions lead to exchange of energy between the system and its surroundings,
either by work in case of piston movement and stirring, or by the exchange of heat. The transfer of
energy (E) by work (Ẇ) and heat (Q̇) will be formulated in the 1st Law of Thermodynamics (Section 12).
The fundamental difference between piston and propeller work, as (possibly) reversible and irreversible
processes will become clear later.

5. Properties

To get a good grip on properties that describe the system, we consider a system of volume V
which is filled by a mass m of substance. To describe variation of properties in space, it is useful
to divide the system into infinitesimal elements of size dV which contain the mass dm, as sketched
in Figure 2.

~r½ ( )x

y

z

m =

Z
dV

½ (~r)

dV; dm

~r

Figure 2. Inhomogeneous distribution of mass density ρ
(−→r ) in a system.

The volume V =
∫

dV filled by the substance can, in principle, be measured by means of a
ruler. The mass m =

∫
dm of the substance can be measured using a scale. The pressure p of the

substance can be measured as the force required to keep a piston in place, divided by the surface area
of the piston.

One distinguishes between extensive properties, which are related to the size of the system,
and intensive properties, which are independent of the overall size of the system. Mass m and volume
V are extensive quantities, for example, they double when the system is doubled; pressure p and
temperature T (yet to be defined) are intensive properties, they remain unchanged when the system
is doubled.

A particular class of intensive properties are the specific properties, which are defined as the ratio
between an extensive property and the corresponding mass. In inhomogeneous states intensive and
specific properties vary locally, that is they have different values in different volume elements dV.
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The local specific properties are defined through the values of the extensive property dΦ and the mass
dm in the volume element,

φ =
dΦ
dm

. (2)

For example, the local specific volume v, and the local mass density ρ, are defined as

v =
1
ρ
=

dV
dm

. (3)

The values of the extensive properties for the full system are determined by integration of the
specific properties over the mass or volume elements,

Φ =
∫

dΦ =
∫

φdm =
∫

ρφdV . (4)

As an example, Figure 2 shows the inhomogeneous distribution of mass density ρ in a system (i.e.,
φ = 1). Note that due to inhomogeneity, the density is a function of location −→r = {x, y, z} of the
element dV, hence ρ = ρ

(−→r ).
For homogeneous states, the integrands can be taken out of the integrals, and we find simple

relations such as
v =

1
ρ
=

V
m

, φ =
Φ
m

. (5)

6. Micro and Macro

A macroscopic amount of matter filling the volume V, say a steel rod or a gas in a box, consists
of an extremely large number—to the order of 1023—of atoms or molecules. These are in constant
interaction which each other and exchange energy and momentum, for example, a gas particle in air at
standard conditions undergoes about 109 collisions per second.

From the viewpoint of mechanics, one would have to describe each particle by its own (quantum
mechanical) equation of motion, in which the interactions with all other particles would have to be
taken into account. Obviously, due to the huge number of particles, this is not feasible. Fortunately,
the constant interaction between particles leads to a collective behavior of the matter already in very
small volume elements dV, in which the state of the matter can be described by few macroscopic
properties like pressure, mass density, temperature and others. This allows us to describe the matter not
as an assembly of atoms, but as a continuum where the state in each volume element dV is described
by these few macroscopic properties.

Note that the underlying assumption is that the volume element contains a sufficiently large
number of particles, which interact with high frequency. Indeed, the continuum hypothesis breaks
down under certain circumstances, in particular for highly rarefied gases [17]. In all of what follows,
however, we shall only consider systems in which the assumption is well justified. Appendix D
provides a short discussion of kinetic gas theory, where macroscopic thermodynamics arises in the
limit of high collision frequency between particles (equivalent to small mean free path).

7. Processes and Equilibrium States

A process is any change in one or more properties occurring within a system. The system depicted
in Figure 1 can be manipulated by moving the piston or propeller, and by changing the temperature of
the system boundary (heating/cooling coil). Any manipulation changes the state of the system locally
and globally—a process occurs.

After all manipulation stops, the states, that is, the values of the local intensive properties in the
volume elements, will keep changing for a while—that is the process continues—until a stable final
state is assumed. This stable final state is called the equilibrium state. The system will remain in the
equilibrium state until a new manipulation commences.



Entropy 2020, 22, 793 7 of 61

Simple examples from daily life are:

(a) A cup of coffee is stirred with a spoon. After the spoon is removed, the coffee will keep moving
for a while until it comes to rest. It will stay at rest indefinitely, unless stirring is recommenced or
the cup is moved.

(b) Milk is poured into coffee. Initially, there are light-brown regions of large milk content and
dark-brown regions of low milk content. After a while, however, coffee and milk are well-mixed,
at mid-brown color, and remain in that state. Stirring speeds the process up, but the mixing
occurs also when no stirring takes place. Personally, I drink standard dip-coffee into which I pour
milk: I have not used a spoon for mixing both in years.

(c) A spoon used to stir hot coffee becomes hot at the end immersed in the coffee. A while after it is
removed from the cup, it will have assumed a homogeneous temperature.

(d) Oil mixed with vinegar by stirring will separate after a while, with oil on top of the vinegar.

In short, observation of daily processes, and experiments in the laboratory, show that a system that
is left to itself for a sufficiently long time will approach a stable equilibrium state, and will remain in
this state as long as the system is not subjected to further manipulation. This experience is the content
of Observation 2. Example (d) shows that not all equilibrium states are homogeneous; however,
temperature will always be homogeneous in equilibrium, which is laid down as Observation 3.

The details of the equilibrium state depend on the constraints on the system, in particular material,
size, mass, and energy; this will become clear further below (Section 39).

The time required for reaching the equilibrium state, and other details of the process
taking place, depend on the initial deviation from the equilibrium state, the material, and the
geometry. Some systems may remain for rather long times in metastable states—these will not be
further discussed.

Physical constraints between different parts of a system can lead to different equilibrium states
within the parts. For instance, a container can be divided by a rigid wall, with different materials at
both sides. Due to the physical division, the materials in the compartments might well be at different
pressures, and different temperatures, and they will not mix. However, if the wall is diathermal, that is,
it allows heat transfer, then the temperature will equilibrate between the compartments. If the wall
is allowed to move, it will do so, until the pressures in both parts are equal. If the wall is removed,
depending on their miscibility the materials might mix, see examples (b) and (d).

Unless otherwise stated, the systems discussed in the following are free from internal constraints.

8. Reversible and Irreversible Processes

When one starts to manipulate a system that is initially in equilibrium, the equilibrium state is
disturbed, and a new process occurs.

All real-life applications of thermodynamics involve some degree of nonequilibrium.
For the discussion of thermodynamics it is customary, and useful, to consider idealized processes,
for which the manipulation happens sufficiently slow. In this case, the system has sufficient time to
adapt so that it is in an equilibrium state at any time. Slow processes that lead the system through
a series of equilibrium states are called quasi-static, or quasi-equilibrium, or reversible, processes.

If the manipulation that causes a quasi-static process stops, the system is already in an equilibrium
state, and no further change will be observed.

Equilibrium states are simple, quite often they are homogenous states, or can be approximated
as homogeneous states (see Section 40). The state of the system is fully described by few extensive
properties, such as mass, volume, energy, and the corresponding pressure and temperature.

When the manipulation is fast, so that the system has no time to reach a new equilibrium
state, it will be in nonequilibrium states. If the manipulation that causes a nonequilibrium
process stops, the system will undergo further changes until it has reached its equilibrium state.
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The equilibration process takes place while no manipulation occurs, that is, the system is left to itself.
Thus, the equilibration is an uncontrolled process.

Nonequilibrium processes typically involve inhomogeneous states, hence their proper description
requires values of the properties at all locations −→r (i.e., in all volume elements dV) of the system.
Accordingly, the detailed description of nonequilibrium processes is more complex than the description
of quasi-static processes. This is the topic of theories of nonequilibrium thermodynamics, where
the processes are described through partial differential equations, see Appendix C. For instance,
the approach of Linear Irreversible Thermodynamics yields the Navier-Stokes and Fourier laws that
are routinely used in fluid dynamics and heat transfer. Apart from giving the desired spatially resolved
description of the process, these equations are also useful in examining under which circumstances
a process can be approximated as quasi-static. For the moment, we state that a process must be
sufficiently slow for this to be the case.

The approach to equilibrium introduces a timeline for processes—As time progresses, an isolated
system, that is, a system that is not further manipulated in any way, so that heat and work vanish,
will talways approach, and finally reach, its unique equilibrium state. The opposite will not be observed,
that is an isolated system will never be seen spontaneously leaving its equilibrium state when no
manipulation occurs.

Indeed, we immediately detect whether a movie of a nonequilibrium process is played forward or
backwards: well mixed milk coffee will not separate suddenly into milk and coffee; a spoon of constant
temperature will not suddenly become hot at one end, and cold at the other; a propeller immersed in a
fluid at rest will not suddenly start to move and lift a weight (Figure 3); oil on top of water will not
suddenly mix with the water; and so forth. We shall call processes with a time-line irreversible.

possible impossible

Figure 3. A possible and an impossible process.

Only for quasi-static processes, where the system is always in equilibrium states, we cannot
distinguish whether a movie is played forwards or backwards. This is why these processes are also
called reversible. Since equilibration requires time, quasi-static, or reversible, processes typically are
slow processes, so that the system always has sufficient time to adapt to an imposed change.

To be clear, we define quasi-static processes as reversible. One could consider irreversible slow
processes, such as the compression of a gas with a piston subject to friction. For the gas itself, the process
would be reversible, but for the system of gas and piston, the process would be irreversible.

9. Temperature and the 0th Law

By touching objects we can distinguish between hot and cold, and we say that hotter states
have a higher temperature. Objective measurement of temperature requires (a) a proper definition,
and (b) a proper device for measurement—a thermometer.

Experience shows that physical states of systems change with temperature. For instance, the gas
thermometer in Figure 4 contains a certain amount of gas enclosed in a container at fixed volume V.
Increase of its temperature T by heating leads to a measurable change in the gas pressure p. Note that
pressure is a mechanical property, which is measured as force per area. An arbitrary temperature scale
can be defined, for example, as T = a + bp with arbitrary constants a and b.

To study temperature, we consider two systems, initially in their respective equilibrium, both not
subject to any work interaction, that is, no piston or propeller motion in Figure 1, which are
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manipulated by bringing them into physical contact, such that energy can pass between the systems
(thermal contact), see Figure 5. Then, the new system that is comprised of the two initial systems
will exhibit a process towards its equilibrium state. Consider first equilibration of a body A with the
gas thermometer, so that the compound system of body and thermometer has the initial temperature
T̄A, which can be read of the thermometer. Next, consider the equilibration of a body B with the gas
thermometer, so that the compound system of body and thermometer has the initial temperature T̄B,
as shown on the thermometer.

Figure 4. In a gas thermometer, temperature T is determined through measurement of pressure p.

Now, we bring the two bodies and the thermometer into thermal contact, and let them equilibrate.
It is observed that both systems change their temperature such the hotter system becomes colder,
and vice versa. Independent of whether the thermometer is in thermal contact only with system A
or in thermal contact with system B, it shows the same temperature. Hence, the equilibrium state
is characterized by a common temperature of both systems. Since no work interaction took place,
one speaks of the thermal equilibrium state.

Expressed more formally, we conclude that if body C (the thermometer in the above) is in thermal
equilibrium with body A and in thermal equilibrium with body B, than also bodies A and B will be in
thermal equilibrium. All three bodies will have the same temperature. The extension to an arbitrary
number of bodies is straightforward, and since any system under consideration can be thought of
as a compund of smaller subsystems, we can conclude that a system in thermal equilibrium has a
homogeneous temperature.

Figure 5. Two bodies of different temperatures T̄A, T̄B assume a common temperature T a while after
they are brought into thermal contact.

The observation outlined above defines temperature, hence its important enough to be laid out as
a law (Observation 3)

The 0th Law of Thermodynamics

In a stable equilibrium state, the temperature of a thermally unrestricted system is uniform. Or,
two bodies in thermal equilibrium have the same temperature.
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The 0th law introduces temperature as a measurable quantity. Indeed, to measure the temperature
of a body, all we have to do is to bring a calibrated thermometer into contact with the body and wait
until the equilibrium state of the system (body and thermometer) is reached. When the size of the
thermometer is sufficiently small compared to the size of the body, the final temperature of body and
thermometer will be (almost) equal to the initial temperature of the body.

10. Ideal Gas Temperature Scale

For proper agreement and reproducibility of temperature measurement, it is helpful to agree on a
temperature scale.

Any gas at sufficiently low pressures and large enough temperatures, behaves as an ideal gas.
From experiments one observes that for an ideal gas confined to a fixed volume the pressure increases
with temperature. The temperature scale is defined such that the relation between pressure and
temperature is linear, that is

T = a + bp (6)

The Celsius scale was originally defined based on the boiling and freezing points of water at
p = 1 atm to define the temperatures of 100 ◦C and 0 ◦C. For the Celsius scale one finds a = −273.15 ◦C
independent of the ideal gas used. The constant b depends on the volume, mass and type of the gas in
the thermometer.

By shifting the temperature scale by a, one can define an alternative scale, the ideal gas temperature
scale, as

T (K) = bp . (7)

The ideal gas scale has the unit Kelvin [K] and is related to the Celsius scale as

T (K) = T (◦C)
K
◦C

+ 273.15K . (8)

It will be shown later that this scale coincides with the thermodynamic temperature scale that follows
from the 2nd law (Section 27).

11. Thermal Equation of State

Careful measurements on simple substances show that specific volume v (or density ρ = 1/v),
pressure p and temperature T cannot be controlled independently. Indeed, in equilibrium states they
are linked through a relation of the form p = p (v, T), or p = p (ρ, T), known as the thermal equation
of state. For most substances, this relation cannot be easily expressed as an actual equation, but is laid
down in property tables.

The thermal equation of state relates measurable properties. It suffices to know the values of
two properties to determine the values of others. This will still be the case when we add energy
and entropy in equilibrium states to the list of thermodynamic properties, which can be determined
through measurement of any two of the measurable properties, that is, (p, T) or (v, T) or (p, v).

To summarize: If we assume local thermal equilibrium, the complete knowledge of the
macroscopic state of a system requires the values of two intensive properties in each location
(i.e., in each infinitesimal volume element), and the local velocity. The state of a system in global
equilibrium, where properties are homogeneous, is described by just two intensive properties
(plus the size of the system, that is either total volume, or total mass). In comparison, full knowledge
of the microscopic state would require the knowledge of location and velocity of each particle.

The ideal gas is one of the simplest substances to study, since it has simple property relations.
Careful measurements have shown that for an ideal gas pressure p, total volume V, temperature T
(in K), and mass m are related by an explicit thermal equation of state, the ideal gas law

pV = mRT . (9)
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Here, R is the gas constant that depends on the type of the gas. With this, the constant in (7) is
b = V/ (mR) = v/R.

Alternative forms of the ideal gas equation result from introducing the specific volume v = V/m
or the mass density ρ = 1/v so that

pv = RT , p = ρRT. (10)

12. The 1st Law of Thermodynamics

It is our daily experience that heat can be converted to work, and that work can be converted to
heat. A propeller mounted over a burning candle will spin when the heated air rises due to buoyancy:
heat is converted to work. Rubbing our hands makes them warmer: work is converted to heat.
Humankind has a long and rich history of making use of both conversions.

While the heat-to-work and work-to-heat conversions are readily observable in simple and more
complex processes, the governing law is not at all obvious from simple observation. It required
groundbreaking thinking and careful experiments to unveil the Law of Conservation of Energy.
Due to its importance in thermodynamics, it is also known as the 1st Law of Thermodynamics,
which expressed in words, reads:

1st Law of Thermodynamics

Energy cannot be produced nor destroyed, it can only be transferred, or converted from one form to
another. In short, energy is conserved.

It took quite some time to formulate the 1st law in this simple form, the credit for finding and
formulating it goes to Robert Meyer (1814–1878), James Prescott Joule (1818–1889), and Hermann
Helmholtz (1821–1894). Through careful measurements and analysis, they recognized that thermal
energy, mechanical energy, and electrical energy can be transformed into each other, which implies
that energy can be transferred by doing work, as in mechanics, and by heat transfer.

The 1st law is generally valid, no violation was ever observed. As knowledge of physics has
developed, other forms of energy had to be included, such as radiative energy, nuclear energy, or the
mass-energy equivalence of the theory of relativity, but there is no doubt today that energy is conserved
under all circumstances.

We formulate the 1st law for the simple closed system of Figure 1, where all three possibilities
to manipulate the system from the outside are indicated. For this system, the conservation law for
energy reads

dE
dt

= Q̇− Ẇ , (11)

where E is the total energy of the system, Q̇ is the total heat transfer rate in or out of the system,
and Ẇ = Ẇpiston + Ẇpropeller is the total power—the work per unit time—exchanged with the
surroundings. Energy is an extensive property, hence also heat and work scale with the size of the
system. For instance, doubling the system size, doubles the energy, and requires twice the work and
heat to observe the same changes of the system.

This equation states that the change of the system’s energy in time (dE/dt) is equal to the energy
transferred by heat and work per unit time (Q̇ − Ẇ). The sign convention used is such that heat
transferred into the system is positive, and work done by the system is positive.

13. Energy

There are many forms of energy that must be accounted for. For the context of the present
discussion, the total energy E of the system is the sum of its kinetic energy Ekin, potential energy Epot,
and internal—or thermal—energy U,

E = U + Ekin + Epot . (12)
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The kinetic energy is well-known from mechanics. For a homogeneous system of mass m and
barycentric velocity V , kinetic energy is given by

Ekin =
m
2
V2 . (13)

For inhomogeneous states, where each mass element has its own velocity, the total kinetic energy of the
system is obtained by integration of the specific kinetic energy ekin over all mass elements dm = ρdV;

ekin =
1
2
V2 and Ekin =

∫
ρekindV =

∫
ρ

2
V2dV . (14)

Also the potential energy in the gravitational field is well-known from mechanics.
For a homogeneous system of mass m, potential energy is given by

Epot = mgn z̄ , (15)

where z̄ is the elevation of the system’s center of mass over a reference height, and gn = 9.81 m
s2 is

the gravitational acceleration on Earth. For inhomogeneous states the total potential energy of the
system is obtained by integration of the specific potential energy epot over all mass elements dm = ρdV;
we have

epot = gnz and Epot =
∫

ρepotdV =
∫

ρgnzdV . (16)

Even if a macroscopic element of matter is at rest, its atoms move about (in a gas or liquid)
or vibrate (in a solid) fast, so that each atom has microscopic kinetic energy. The atoms are
subject to interatomic forces, which contribute microscopic potential energies. Moreover, energy is
associated with the atoms’ internal quantum states. Since the microscopic energies cannot be observed
macroscopically, one speaks of the internal energy, or thermal energy, of the material, denoted as U.

For inhomogeneous states the total internal energy of the system is obtained by integration of the
specific internal energy u over all mass elements dm = ρdV. For homogeneous and inhomogeneous
systems we have

U = mu and U =
∫

ρudV . (17)

14. Caloric Equation of State

Internal energy cannot be measured directly. The caloric equation of state relates the specific internal
energy u to measurable quantities in equilibrium states, it is of the form u = u (T, v), or u = u (T, p).
Recall that pressure, volume and temperature are related by the thermal equation of state, p (v, T);
therefore it suffices to know two properties in order to determine the others.

We note that internal energy summarizes all microscopic contributions to energy. Hence, a system,
or a volume element within a system, will always have internal energy u, independent of whether the
system is in (local) equilibrium states or in arbitrarily strong nonequilibrium states. Only in the former,
however, does the caloric equation of state provide a link between energy and measurable properties.

The caloric equation of state must be determined by careful measurements, where the response of
the system to heat or work supply is evaluated by means of the first law. For most materials the results
cannot be easily expressed as equations, and are tabulated in property tables.

We consider a closed system heated slowly at constant volume (isochoric process),
with homogeneous temperature T at all times. Then, the first law (27) reduces to (recall that
U = mu (T, v) and m = const.)

m
(

∂u
∂T

)
v

dT
dt

= Q̇ . (18)
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Here, we use the standard notation of thermodynamics, where
(

∂u
∂T

)
v
= ∂u(T,v)

∂T denotes the partial
derivative of internal energy with temperature at constant specific volume v = V/m. This derivative
is known as the specific heat (or specific heat capacity) at constant volume,

cv =

(
∂u
∂T

)
v

. (19)

As defined here, based on SI units, the specific heat cv is the amount of heat required to increase the
temperature of 1kg of substance by 1K at constant volume. It can be measured by controlled heating of
a fixed amount of substance in a fixed volume system, and measurement of the ensuing temperature
difference; its SI unit is

[
kJ

kgK

]
.

In general, internal energy u (T, v) is a function of a function of temperature and specific volume.
For incompressible liquids and solids the specific volume is constant, v = const, and the internal energy
is a function of temperature alone, u (T). Interestingly, also for ideal gases the internal energy turns
out to be a function of temperature alone, both experimentally and from theoretical considerations.
For these materials the specific heat at constat volume depends only on temperature, cv (T) =

(
du
dt

)
and its integration gives the caloric equation of state as

u (T) =
∫ T

T0

cv
(
T′
)

dT′ + u0 . (20)

Only energy differences can be measured, where the first law is used to evaluate careful experiments.
The choice of the energy constant u0 = u (T0) fixes the energy scale. The actual value of this constant is
relevant for the discussion of chemical reactions [8]. Note that proper mathematical notation requires
to distinguish between the actual temperature T of the system, and the integration variable T′.

For materials in which the specific heat varies only slightly with temperature in the interval of
interest, the specific heat can be approximated by a suitable constant average cv, so that the caloric
equation of state assumes the particularly simple linear form

u (T) = cv (T − T0) + u0 . (21)

15. Work and Power

Work, denoted by W, is the product of a force and the displacement of its point of application.
Power, denoted by Ẇ, is work done per unit time, that is the force times the velocity of its point of
application. The total work for a process is the time integral of power over the duration ∆t = t2 − t1 of
the process,

W =
∫ t2

t1

Ẇdt . (22)

For the closed system depicted in Figure 1 there are two contributions to work: moving boundary
work, due to the motion of the piston, and rotating shaft work, which moves the propeller. Other forms
of work, for example, spring work or electrical work could be added as well.

Work and power can be positive or negative. We follow the sign convention that work done by
the system is positive and work done to the system is negative.

For systems with homogeneous pressure p, which might change with time as a process occurs
(e.g., the piston moves), one finds the following expressions for moving boundary work with finite
and infinitesimal displacement, and for power,

W12 =
∫ 2

1
pdV , δW = pdV , Ẇ = p

dV
dt

. (23)
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Moving boundary work depends on the process path, so that the work exchanged for an infinitesimal
process step, δW = pdV = Ẇdt, is not an exact differential (see next section). Closed equilibrium
systems are characterized by a single homogeneous pressure p, a single homogeneous temperature
T, and the volume V. In quasi-static (or reversible) processes, the system passes through a series of
equilibrium states which can be indicated in suitable diagrams, for example, the p-V-diagram.

In a closed system the propeller stirs the working fluid and creates inhomogeneous states.
The power is related to the torque T and the revolutionary speed ṅ (revolutions per unit time) as
Ẇ = 2πṅT. Fluid friction transmits fluid motion (i.e., momentum and kinetic energy) from the fluid
close to the propeller to the fluid further away. Due to the inherent inhomogeneity, stirring of a fluid in
a closed system cannot be a quasi-static process, and is always irreversible.

In general, there might be several work interactions Ẇj of the system, then the total work for the
system is the sum over all contributions; for example, for power

Ẇ = ∑
j

Ẇj . (24)

For reversible processes with additional work contributions, one has Ẇ = ∑j xj
dYj
dt , where {xj, Yj} are

pairs of conjugate work variables, such as {p, V}.
Finally, we know from the science of mechanics that by using gears and levers, one can transfer

energy as work from slow moving to fast moving systems and vice versa, and one can transmit work
from high pressure to low pressure systems and vice versa. However, due to friction within the
mechanical system used for transmission of work, some of the work may be lost. This experience is
formulated in Observation 4.

16. Exact and Inexact Differentials

Above we have seen that work depends on the process path. In the language of mathematics this
implies that the work for an infinitesimal step is not an exact differential, and that is why a Greek delta
(δ) is used to denote the work for an infinitesimal change as δW. As will be seen in the next section,
heat is path dependent as well.

State properties like pressure, temperature, volume and energy describe the momentary state
of the system, or, for inhomogeneous states, the momentary state in the local volume element.
State properties have exact differentials for which we write, for example, dE and dV. The energy change
E2 − E1 =

∫ 2
1 dE and the volume change V2 − V1 =

∫ 2
1 dV are independent of the path connecting

the states.
It is important to remember that work and heat, as path functions, do not describe states, but the

processes that leads to changes of the state. Hence, for a process connecting two states 1, 2 we
write W12 =

∫ 2
1 δW, Q12 =

∫ 2
1 δQ, where W12 and Q12 are the energy transferred across the system

boundaries by heat or work.
A state is characterized by state properties (pressure, temperature, etc.), it does not possess work

or heat.
Quasi-static (reversible) processes go through well defined equilibrium states, so that the whole

process path can be indicated in diagrams, for example, the p-V-diagram.
Nonequilibrium (irreversible) processes, for which typically the states are different in all

volume elements, cannot be drawn into diagrams. Often irreversible processes connect homogeneous
equilibrium states which can be indicated in the diagram. It is recommended to use dashed lines to
indicate nonequilibrium processes that connect equilibrium states. As an example, Figure 6 shows
a p-V-diagram of two processes, one reversible, one irreversible, between the same equilibrium
states 1 and 2. We emphasize that the dashed line does not refer to actual states of the system.
The corresponding work for the nonequilibrium process cannot be indicated as the area below the
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curve, since its computation requires the knowledge of the—inhomogeneous!—pressures at the piston
surface at all times during the process.

p

p1

p2

VV1 V2

2

1

reversible process

irreversible process

Figure 6. A reversible (quasi-static) and an irreversible (nonequilibrium) process between the
equilibrium states 1 and 2.

17. Heat Transfer

Heat is the transfer of energy due to differences in temperature. Experience shows that for systems
in thermal contact the direction of heat transfer is restricted, such that heat will always go from hot to
cold by itself, but not vice versa. This experience is formulated in Observation 5.

This restriction of direction is an important difference to energy transfer by work between systems
in mechanical contact, which is not restricted.

Since heat flows only in response to a temperature difference, a quasi-static (reversible) heat
transfer process can only be realized in the limit of infinitesimal temperature differences between the
system and the system boundary, and for infinitesimal temperature gradients within the system.

We use the following notation: Q̇ denotes the heat transfer rate, that is the amount of energy
transferred as heat per unit time. Heat depends on the process path, so that the heat exchanged for
an infinitesimal process step, δQ = Q̇dt, is not an exact differential. The total heat transfer for a process
between states 1 and 2 is

Q12 =
∫ 2

1
δQ =

∫ t2

t1

Q̇dt . (25)

By the convention used, heat transferred into the system is positive, heat transferred out of the system
is negative.

A process in which no heat transfer takes place, Q̇ = 0, is called adiabatic process.
In general, there might be several heat interactions Q̇k of the system, then the total heat for the

system is the sum over all contributions; for example, for the heating rate

Q̇ = ∑
k

Q̇k . (26)

For the discussion of the 2nd law we will consider the Q̇k as heat crossing the system boundary at
locations where the boundary has the temperature Tk.

18. 1st Law for Reversible Processes

The form (11) of the first law is valid for all closed systems. When only reversible processes
occur within the system, so that the system is in equilibrium states at any time, the equation can be
simplified as follows: From our discussion of equilibrium states we know that for reversible processes
the system will be homogeneous and that all changes must be very slow, which implies very small
velocities relative to the center of mass of the system. Therefore, kinetic energy, which is velocity
squared, can be ignored, Ekin = 0. Stirring, which transfers energy by moving the fluid and friction, is
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irreversible, hence in a reversible process only moving boundary work can be transferred, where piston
friction is absent. As long as the system location does not change, the potential energy does not change,
and we can set Epot = 0.

With all this, for reversible (quasi-static) processes the 1st law of thermodynamics reduces to

dU
dt

= Q̇− p
dV
dt

or U2 −U1 = Q12 −
∫ 2

1
pdV , (27)

where the second form results from integration over the process duration.

19. Entropy and the Trend to Equilibrium

The original derivation of the 2nd law is due to Sadi Carnot (1796–1832) and Rudolf Clausius
(1822–1888), where discussions of thermodynamic engines combined with Observation 5 were used to
deduce the 2nd law [1]. Even today, many textbooks present variants of their work [2–5]. As discussed
in the introduction, we aim at introducing entropy without the use of heat engines, only using the
5 observations.

We briefly summarize our earlier statements on processes in closed systems: a closed system can
be manipulated by exchange of work and heat with its surroundings only. In nonequilibrium—that
is, irreversible—processes, when all manipulation stops, the system will undergo further changes
until it reaches a final equilibrium state. This equilibrium state is stable, that is the system will not
leave the equilibrium state spontaneously. It requires new action—exchange of work or heat with the
surroundings—to change the state of the system. This paragraph is summarized in Observations 1–3.

The following nonequilibrium processes are well-known from experience, and will be used in the
considerations below:

(a) Work can be transferred without restriction, by means of gears and levers. However, in transfer
some work might be lost to friction (Observation 4).

(b) Heat goes from hot to cold. When two bodies at different temperatures are brought into
thermal contact, heat will flow from the hotter to the colder body until both reach their common
equilibrium temperature (Observation 5).

The process from an initial nonequilibrium state to the final equilibrium state requires some
time. However, if the actions on the system (only work and heat!) are sufficiently slow, the system
has enough time to adapt and will be in equilibrium states at all times. We speak of quasi-static—or,
reversible—processes. When the slow manipulation is stopped at any time, no further changes occur.

If a system is not manipulated, that is there is neither heat or work exchange between the
systems and its surroundings, we speak of an isolated system. The behavior of isolated systems
described above—a change occurs until a stable state is reached—can be described mathematically
by an inequality. The final stable state must be a maximum (alternatively, a minimum) of a suitable
property describing the system. For a meaningful description of systems of arbitrary size, the new
property should scale with system size, that is it must be extensive.

We call this new extensive property entropy, denoted S, and write an inequality for the
isolated system,

dS
dt

= Ṡgen ≥ 0 . (28)

Ṡgen is called the entropy generation rate. The entropy generation rate is positive in nonequilibrium
(Ṡgen > 0), and vanishes in equilibrium (Ṡgen = 0). The new Equation (28) states that in an isolated
system the entropy will grow in time ( dS

dt > 0) until the stable equilibrium state is reached ( dS
dt = 0).

Non-zero entropy generation, Ṡgen > 0, describes the irreversible process towards equilibrium,
for example, through internal heat transfer and friction. There is no entropy generation in equilibrium,
where entropy is constant. Since entropy only grows before the isolated system reaches its equilibrium
state, the latter is a maximum of entropy.
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While this equation describes the observed behavior in principle, it does not give a hint at what
the newly introduced quantities S and Ṡgen—entropy and entropy generation rate—are, or how they
can be determined. Hence, an important part of the following discussion concerns the relation of
entropy to measurable quantities, such as temperature, pressure, and specific volume. Moreover,
it will be seen that entropy generation rate describes the irreversibility in, for example, heat transfer
across finite temperature difference, or frictional flow.

The above postulation of an inequality is based on phenomenological arguments. The discussion
of irreversible processes has shown that over time all isolated systems will evolve to a unique
equilibrium state. The first law alone does not suffice to describe this behavior. Nonequilibrium
processes aim to reach equilibrium, and the inequality is required to describe the clear direction
in time.

As introduced here, entropy and the above rate equation describe irreversible processes,
where initial nonequilibrium states evolve towards equilibrium. Not only is there no reason to
restrict entropy to equilibrium, but rather, in this philosophy, it is essential to define entropy as
a nonequilibrium property.

In the next sections we will extend the second law to non-isolated systems, identify entropy
as a measurable property—at least in equilibrium states—and discuss entropy generation in
irreversible processes.

20. Entropy Transfer

In non-isolated systems, which are manipulated by exchange of heat and work with their
surroundings, we expect an exchange of entropy with the surroundings which must be added to the
entropy inequality. We write

dS
dt

= Γ̇ + Ṡgen, with Ṡgen ≥ 0 , (29)

where Γ̇ is the entropy transfer rate. This equation states that the change of entropy in time (dS/dt)
is due to transport of entropy over the system boundary (Γ̇) and generation of entropy within the
system boundaries (Ṡgen). This form of the second law is valid for all processes in closed systems.
The entropy generation rate is positive (Ṡgen > 0) for irreversible processes, and it vanishes (Ṡgen = 0)
in equilibrium and for reversible processes, where the system is in equilibrium states at all times.

All real technical processes are somewhat irreversible, since friction and heat transfer cannot be
avoided. Reversible processes are idealizations that can be used to study the principal behavior of
processes, and best performance limits.

We apply Observation 1: Since a closed system can only be manipulated through the exchange
of heat and work with the surroundings, the transfer of any other property, including the transfer of
entropy, must be related to heat and work, and must vanish when heat and work vanish. Therefore
the entropy transfer Γ̇ can only be of the form

Γ̇ = ∑
k

βkQ̇k −∑
j

γjẆj , (30)

Recall that total heat and work transfer are the sum of many different contributions, Q̇ = ∑k Q̇k and
Ẇ = ∑j Ẇj. In the above formulation, the coefficients βk and γj are used to distinguish heat and work
transfer at different conditions at that part of the system boundary where the transfer (Q̇k or Ẇj) takes
place. Since work and heat scale with the size of the system, and entropy is extensive, the coefficients
βk and γj must be intensive, that is, independent of system size.

At this point, the coefficients βk, γj depend in an unknown manner on properties describing the
state of the system and its interaction with the surroundings. While the relation between the entropy
transfer rate Γ̇ and the energy transfer rates Q̇k, Ẇj is not necessarily linear, the form (30) is chosen
to clearly indicate that entropy transfer is zero when no energy is transferred, Γ̇ = 0 if Q̇k = Ẇj = 0
(isolated system).
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With this expression for entropy transfer, the 2nd law assumes the form

dS
dt

+ ∑
j

γjẆj −∑
k

βkQ̇k = Ṡgen ≥ 0 , (31)

This equation gives the mathematical formulation of the trend to equilibrium for a non-isolated closed
system (exchange of heat and work, but not of mass). The next step is to identify entropy S and the
coefficients βk, γj in the entropy transfer rate Γ̇ in terms of quantities we can measure or control.

21. Direction of Heat Transfer

A temperature reservoir is defined as a large body in equilibrium whose temperature does
not change when heat is removed or added (this requires that the reservoir’s thermal mass, mRcR,
approaches infinity).

We consider heat transfer between two reservoirs of temperatures TH and TL, where TH is the
temperature of the hotter reservoir. The heat is transferred through a heat conductor (HC), which is the
thermodynamic system to be evaluated. A pure steady state heat transfer problem is studied, where the
conductor receives the heat flows Q̇H and Q̇L, and exchanges no work with the surroundings, Ẇ = 0.

The left part of Figure 7 shows a schematic of the heat transfer process. For steady state conditions
no change over time is observed in the conductor, so that dE

dt = dS
dt = 0. We emphasize that for this

process the heat conductor will be in a nonequilibrium state, for example, it could be a solid heat
conductor with an imposed temperature gradient, or, possibly, a gas in a state of natural convection
in the gravitational field. To proceed with the argument, it is not necessary to quantify energy and
entropy of the conductor, since both do not change in steady state processes.
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Figure 7. Heat transfer through a heat conductor HC (left) and transmission of work through a steady
state system S (right).

For steady state, the first and second law (11, 31) applied to the heat conductor HC reduce to

Q̇H = −Q̇L = Q̇ (32)

−βHQ̇H − βLQ̇L = Ṡgen ≥ 0 . (33)

Here, βH and βL are the values of β at the hot and cold sides of the conductor, respectively. Combining
both we have

(βL − βH) Q̇ = Ṡgen ≥ 0 . (34)

We apply Observation 5: Since heat must go from hot to cold (from reservoir TH to reservoir TL),
the heat must be positive, Q̇ = QH > 0, which requires (βL − βH) > 0. Thus, the coefficient β must be
smaller for the part of the system which is in contact with the hotter reservoir, βH < βL. This must be so
irrespective of the values of any other properties at the system boundaries (L, H), that is, independent
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of the conductor material or its mass density, or any other material properties, and also for all possible
values Q̇ of the heat transferred. It follows, that βL, βH must depend on temperature of the respective
reservoir only.

Moreover, β must be a decreasing function of reservoir temperature alone, if temperature of the
hotter reservoir is defined to be higher.

22. Work Transfer and Friction Loss

For the discussion of the coefficient γ we turn our attention to the transmission of work. The right
part of Figure 7 shows two “work reservoirs” characterized by different values γI, γII between which
work is transmitted by a steady state system S.

We apply Observation 4. The direction of work transfer is not restricted: by means of gears and
levers work can be transmitted from low to high force and vice versa, and from low to high velocity
and vice versa. Therefore, transmission might occur from I to II, and as well from II to I. Accordingly,
there is no obvious interpretation of the coefficient γ. Indeed, we will soon be able to remove the
coefficient γ from the discussion.

According to the second part of Observation 4, friction might occur in the transmission.
Thus, in the transmission process we expect some work being lost to frictional heating, therefore∣∣Ẇout

∣∣ ≤ ∣∣Ẇin
∣∣. In order to keep the transmission system at constant temperature, some heat must be

removed to a reservoir (typically the outside environment). Work and heat for both cases are indicated
in the figure, the arrows indicate the direction of transfer.

The first law for both transmission processes reads (steady state, dE
dt = 0)

0 = −
∣∣Q̇∣∣− ∣∣Ẇout

∣∣+ ∣∣Ẇin
∣∣ , (35)

where the signs account for the direction of the flows. Since work loss in transmission means∣∣Ẇout
∣∣ ≤ ∣∣Ẇin

∣∣, this implies that heat must leave the system, Q̇ = −
∣∣Q̇∣∣ ≤ 0, as indicated in the figure.

Due to the different direction of work in the two processes considered, the second law (31) gives
different conditions for both situations (steady state, dS

dt = 0),

− γI
∣∣Ẇin

∣∣+ γII
∣∣Ẇout

∣∣+ β
∣∣Q̇∣∣ ≥ 0 , γI

∣∣Ẇout
∣∣− γII

∣∣Ẇin
∣∣+ β

∣∣Q̇∣∣ ≥ 0 , (36)

where, as we have seen in the previous section, β is a measure for the temperature of the reservoir that
accepts the heat. Elimination of the heat

∣∣Q̇∣∣ between first and second laws gives two inequalities,

(γII − β)
∣∣Ẇout

∣∣− (γI − β)
∣∣Ẇin

∣∣ ≥ 0 , (γI − β)
∣∣Ẇout

∣∣− (γII − β)
∣∣Ẇin

∣∣ ≥ 0, (37)

or, after some reshuffling,

(β− γII)

∣∣Ẇout
∣∣∣∣Ẇin
∣∣ ≤ (β− γI) , (β− γI)

∣∣Ẇout
∣∣∣∣Ẇin
∣∣ ≤ (β− γII) . (38)

Combining the two equations (38) gives the two inequalities

(β− γI)

(∣∣Ẇout
∣∣∣∣Ẇin
∣∣
)2

≤ (β− γI) , (β− γII)

(∣∣Ẇout
∣∣∣∣Ẇin
∣∣
)2

≤ (β− γII) . (39)

From the these follows, since 0 ≤ |Ẇout|
|Ẇin| ≤ 1, that (β− γ) must be non-negative, β− γ ≥ 0.

Both inequalities (38) must hold for arbitrary transmission systems, that is for all 0 ≤ |Ẇout|
|Ẇin| ≤ 1,

and all temperatures of the heat receiving reservoir, that is for all β. For a reversible transmission,
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where |Ẇout|
|Ẇin| = 1, both inequalities (38) can only hold simultaneously if γI = γII. Accordingly,

γI = γII = γ must be a constant, and (β− γ) ≥ 0 for all β.
With γ as a constant, the entropy balance (31) becomes

dS
dt

+ γẆ −∑ βkQ̇k = Ṡgen ≥ 0 , (40)

where Ẇ = ∑j Ẇj is the net power for the system. The energy balance solved for power,
Ẇ = ∑ Q̇k − dE

dt , allows us to eliminate work, so that the 2nd law becomes

d (S− γE)
dt

−∑ (βk − γ) Q̇k = Ṡgen ≥ 0 . (41)

23. Entropy and Thermodynamic Temperature

Without loss of generality, we can absorb the energy term γE into entropy, that is, we set

(S− γE)→ S ; (42)

this is equivalent to setting γ = 0. Note that, since energy is conserved, any multiple of energy can be
added to entropy without changing the principal features of the 2nd law; obviously, the most elegant
formulation is the one where work does not appear.

Moreover, we have found that (β− γ) is a non-negative monotonously decreasing function of
temperature, and we define thermodynamic temperature as

T =
1

β− γ
> 0 . (43)

Note that non-negativity of inverse temperature implies that temperature itself is strictly positive.
With this, we have the 2nd law in the form

dS
dt
−∑

k

Q̇k
TR,k

= Ṡgen ≥ 0 . (44)

The above line of arguments relied solely on the temperatures of the reservoirs with which the system
exchanges heat; in order to emphasize this, we write the reservoir temperatures as TR,k.

The form (44) is valid for any system S, in any state, that exchanges heat with reservoirs which
have thermodynamic temperatures TR,k. The entropy of the system is S, and it should be clear from the
derivation that it is defined for any state, equilibrium, or nonequilibrium! Thermodynamic temperature
must be positive to ensure dissipation of work due to friction. The discussion below will show that
for systems in local thermal equilibrium, the reservoir temperature can be replaced by the system
boundary temperature.

24. Entropy in Equilibrium: Gibbs Equation

Equilibrium entropy can be related to measurable quantities in a straightforward manner, so that
it is measurable as well, albeit indirectly. We consider an equilibrium system undergoing a quasi-static
processes, in contact with a heater at temperature T; for instance we might think of a carefully controlled
resistance heater. Due to the equilibrium condition, the temperature of the system must be T as well
(0th law!), and the entropy generation vanishes, Ṡgen = 0. Then, Equation (44) for entropy becomes

dSE
dt

=
Q̇
T

; (45)
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while for this case the the 1st law (45) reads

dUE
dt

= Q̇− p
dV
dt

. (46)

In both equations we added the index E to highlight the equilibrium state; p is the homogeneous
pressure of the equilibrium state.

We are only interested in an infinitesimal step of the process, of duration dt. Eliminating the heat
between the two laws, we find

TdSE = dUE + pdV . (47)

This relation is known as the Gibbs equation, named after Josiah Willard Gibbs (1839–1903).
The Gibbs equation is a differential relation between properties of the system and valid for all simple
substances—in equilibrium states.

We note that T and p are intensive, and U, V and S are extensive properties. The specific entropy
sE = SE/m can be computed from the Gibbs equation for specific properties, which is obtained by
division of (47) with the constant mass m. We ignore the subscript E for streamlined notation, so that
the Gibbs equation for specific properties reads

Tds = du + pdv . (48)

Solving the first law for reversible processes (27) for heat and comparing the result with the Gibbs
equation we find, with Q̇dt = δQ,

dS =
1
T
(dU + pdV) =

1
T

δQ . (49)

We recall that heat is a path function, that is, δQ is an inexact differential, but entropy is a state
property, that is, dS is an exact differential. In the language of mathematics, the inverse thermodynamic
temperature 1

T serves as an integrating factor for δQ, such that dS = 1
T δQ becomes an exact differential.

It must be noted that one can always find an integrating factor for a differential form of
two variables. Hence, it must be emphasized that thermodynamic temperature T remains an integrating
factor if additional contributions to reversible work (conjugate work variables) are considered in the
first law, which leads to the Gibbs equation in the form TdS = dU − ∑j xjdYj, where {xj, Yj} are
pairs of conjugate work variables, such as {p, V}. For instance, this becomes clear in Caratheodory’s
axiomatic treatment of thermodynamics (for adiabatic processes) [9], which is briefly discussed in
Appendix A.

From the above, we see that for reversible processes δQ = TdS. Accordingly, the total heat
exchanged in a reversible process can be computed from temperature and entropy as the area below
the process curve in the temperature-entropy diagram (T-S-diagram),

Q12 =
∫ 2

1
TdS . (50)

This is analogue to the computation of the work in a reversible process as W12 =
∫ 2

1 pdV.

25. Measurability of Properties

Some properties are easy to measure, and thus quite intuitive, for example, pressure p, temperature
T and specific volume v. Accordingly, the thermal equation of state, p (T, v) can be measured with
relative ease, for systems in equilibrium. Other properties cannot be measured directly, for instance
internal energy u, which must be determined by means of applying the first law to a calorimeter,
or equilibrium entropy s, which must be determined from other properties by integration of the Gibbs
Equation (48).
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The Gibbs equation gives a differential relation between properties for any simple substance.
Its analysis with the tools of multivariable calculus shows that specific internal energy u, specific
enthalpy h = u + pv, specific Helmholtz free energy f = u − Ts, and specific Gibbs free energy
g = h− Ts are potentials when considered as functions of particular variables. The evaluation of
the potentials leads to a rich variety of relations between thermodynamic properties. In particular,
these relate properties that are more difficult, or even impossible, to measure to those that are more
easy to measure, and thus reduce the necessary measurements to determine data for all properties.
The discussion of the thermodynamic potentials energy u, enthalpy h, Helmholtz free energy f
and Gibbs free energy g, based on the Gibbs equation is one of the highlights of equilibrium
thermodynamics [8,10]. Here, we refrain from a full discussion and only consider one important
result in the next section.

To avoid misunderstanding, we point out that the following Sections 26–29 concern
thermodynamic properties of systems in equilibrium states. We also stress that entropy and internal
energy are system properties also in nonequilibrium states.

26. A Useful Relation

The Gibbs equation formulated for the Helmholtz free energy f = u− Ts arises from a Legendre
transform Tds = d (Ts)− sdT in the Gibbs equation as

d f = −sdT − pdv . (51)

Hence, f (T, v) is a thermodynamic potential [8,10], with

− s =
(

∂ f
∂T

)
v

, −p =

(
∂ f
∂v

)
T

,
(

∂s
∂v

)
T
=

(
∂p
∂T

)
v

. (52)

The last equation is the Maxwell relation for this potential, it results from exchanging the order of

derivatives, ∂2 f
∂v∂T = ∂2 f

∂T∂v . Remarkably, the Maxwell relation (52)3 contains the expression
(

∂p
∂T

)
v
,

which can be interpreted as the change of pressure p with temperature T in a process at constant
volume v. Since p, T and v can be measured, this expression can be found experimentally. In fact,
measurement of {p, T, v} gives the thermal equation of state p (T, v), and we can say that

(
∂p
∂T

)
v

can be

determined from the thermal equation of state. The other expression,
(

∂s
∂v

)
T

, cannot be measured by
itself, since it contains entropy s, which cannot be measured directly. Hence, with the Maxwell relation
the expression

(
∂s
∂v

)
T

can be measured indirectly, through measurement of the thermal equation
of state.

To proceed, we consider energy and entropy in the Gibbs Equation (48) as functions of temperature
and volume, u (T, v), s (T, v). We take the partial derivative of the Gibbs equation with respect to v
while keeping T constant, to find (

∂u
∂v

)
T
= T

(
∂s
∂v

)
T
− p . (53)

With the Maxwell relation (52)3 to replace the entropy derivative
(

∂s
∂v

)
T

in (53)1, we find
an equation for the volume dependence of internal energy that is entirely determined by the thermal
equation of state p (T, v), (

∂u
∂v

)
T
= T

(
∂p
∂T

)
v
− p . (54)

Since internal energy cannot be measured directly, the left hand side cannot be determined
experimentally. The equation states that the volume dependence of the internal energy is known from
measurement of the thermal equation of state.
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27. Thermodynamic and Ideal Gas Temperatures

In the derivation of the 2nd law, thermodynamic temperature T appears as the factor of
proportionality between the heat transfer rate Q̇ and the entropy transfer rate Γ̇. In previous sections we
have seen that this definition of thermodynamic temperature stands in agreement with the direction of
heat transfer: heat flows from hot (high T) to cold (low T) by itself. The heat flow aims at equilibrating
the temperature within any isolated system that is left to itself, so that two systems in thermal
equilibrium have the same thermodynamic temperature. Moreover, the discussion of internal friction
showed that thermodynamic temperature must be positive.

While we have claimed agreement of thermodynamic temperature with the ideal gas temperature
scale in Section 9, we have yet to give proof of this. To do so, we use (54) together with the experimental
result stated in Section 14, that for an ideal gas the internal energy does not depend on volume, but only
on temperature (see also Section 35). This implies, for the ideal gas,

0 =

(
∂u
∂v

)
T
= T

(
∂p
∂T

)
v
− p ⇒ p = T

(
∂p
∂T

)
v

. (55)

Accordingly, ideal gas pressure must be a linear function of the thermodynamic temperature T,

p = π (v) T . (56)

The volume dependency π (v) must be measured, for example, in a piston cylinder system in contact
with a temperature reservoir, so that the temperature is constant. Measurements show that pressure is
inversely proportional to volume, so that

p = π0
T
v

, (57)

with a constant π0 that fixes the thermodynamic temperature scale.
The Kelvin temperature scale, named after William Thomson, Lord Kelvin (1824–1907), historically

used the triple point of water (611 kPa, 0.01 ◦C) as reference. The triple point is the unique equilibrium
state at which a substance can coexist in all three phases, solid, liquid and vapor. The Kelvin scales
assigns the value of TTr = 273.16 K to this unique point, which can be reproduced with relative ease
in laboratories, so that calibration of thermometers is consistent. With this choice, the constant π0

is the specific gas constant R = R̄/M, where R̄ = 8.314 kJ/(kmolK) is the universal gas constant,
and M is the molecular mass with unit [kg/kmol] (e.g., MHe = 4 kg

kmol for helium, MH2O = 18 kg
kmol for

water, Mair = 29 kg
kmol for air), so that, as already stated in Section 11,

pv = RT . (58)

In 2018, the temperature scale became independent of the triple point of water. Instead, it is now
set by fixing the Boltzmann constant kB, which is the gas constant per particle, that is, R̄ = kB Av where
Av is the Avogadro constant [24]. At the same time, other SI units were fredefined by assigning fixed
values to physical constants, including the Avogadro constant, which defines the number of particles
in one mole [25].

The historic development of the 2nd law relied on the use of Carnot engines, that is, a fully
reversible engine between two reservoirs, and the Carnot process—which is a particular realization of
a Carnot engine. Evaluation of the Carnot cycle for an ideal gas then shows the equivalence of ideal gas
temperature and thermodynamic temperature. In the present treatment, all statements about engines
are derived from the laws of thermodynamics, after they are found, based on simple experience.

The positivity of thermodynamic temperature implies positive ideal gas temperature and hence
positive gas pressures. In Section 41, positive thermodynamic temperature is linked to mechanical
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stability. The ideal gas equation provides an intuitive example for this: A gas under negative pressure
would collapse, hence be in an unstable state.

28. Measurement of Properties

Only few thermodynamic properties can be measured easily, namely temperature T, pressure p,
and volume v. These are related by the thermal equation of state p (T, v) which is therefore relatively
easy to measure.

The specific heat cv =
(

∂u
∂T

)
v

can be determined from careful measurements. These calorimetric
measurements employ the first law, where the change in temperature in response to the heat (or work)
added to the system is measured.

Other important quantities, however, for example, u, h, f , g, s, cannot be measured directly.
We briefly study how they can be related to measurable quantities, that is, T, p, v, and cv by means of
the Gibbs equation and the differential relations derived above.

We consider the measurement of internal energy. The differential of u (T, v) is

du = cvdT +

(
∂u
∂v

)
T

dv . (59)

Therefore, the internal energy u (T, v) can be determined by integration when cv and
(

∂u
∂v

)
T

are known

from measurements. By (54) the term
(

∂u
∂v

)
T

is known through measurement of the thermal equation
of state, and we can write

du = cvdT +

[
T
(

∂p
∂T

)
v
− p

]
dv . (60)

Integration is performed from a reference state (T0, v0) to the actual state (T, v). Since internal
energy is a point function, its differential is exact, and the integration is independent of the path chosen.
The easiest integration is in two steps, first at constant volume v0 from (T0, v0) to (T, v0), then at
constant temperature T from (T, v0) to (T, v),

u (T, v)− u (T0, v0) =
∫ T

T0

cv
(
T′, v0

)
dT′ +

∫ v

v0

[
T
(

∂p
∂T

)
v′
− p

(
T, v′

)]
dv′ . (61)

Accordingly, in order to determine the internal energy u (T, v) for all T and v it is sufficient to measure
the thermal equation of state p (T, v) for all (T, v) and the specific heat cv (T, v0) for all temperatures T
but only one volume v0. For the ideal gas, the volume contribution vanishes, and the above reduces
to (20).

The internal energy can only be determined apart from a reference value u (T0, v0). As long as no
chemical reactions occur, the energy constant u (T0, v0) can be arbitrarily chosen.

Entropy s (T, v) follows by integration of the Gibbs equation, for example, in the form,
again with (54),

ds =
1
T

du +
p
T

dv =
cv

T
dT +

1
T

((
∂u
∂v

)
T
+ p

)
dv =

cv

T
dT +

(
∂p
∂T

)
v

dv , (62)

as

s (T, v)− s (T0, v0) =
∫ T

T0

cv (T′, v0)

T′
dT′ +

∫ v

v0

(
∂p
∂T

)
v′

dv′ ; (63)

Also entropy can be determined only apart from a reference value s (T0, v0) which only plays a role
when chemical reactions occur; the third law of thermodynamics fixes the scale properly.

After u and s are determined, enthalpy h, Helmholtz free energy f , and Gibbs free energy g simply
follow by means of their definitions. Thus the measurement of all thermodynamic quantities requires
only the measurement of the thermal equation of state p (T, v) for all (T, v) and the measurement of



Entropy 2020, 22, 793 25 of 61

the specific heat at constant volume cv (T, v0) for all temperatures, but only one volume, for example,
in a constant volume calorimeter. All other quantities follow from differential relations that are based
on the Gibbs equation, and integration [8,10].

Above we have outlined the necessary measurements to fully determine all relevant
thermodynamic properties for systems in equilibrium. We close this section by pointing out that
all properties can be determined if just one of the thermodynamic potentials u, h, f , g is known [8,10].
Since all properties can be derived from the potential, the expression for the potential is sometimes
called the fundamental relation.

29. Property Relations for Entropy

For incompressible liquids and solids, the specific volume is constant, hence dv = 0. The caloric
equation of state (59) implies du = cvdT and the Gibbs equation reduces to Tds = cvdT. For constant
specific heat, cv = const., integration gives entropy as explicit function of temperature,

s (T) = cv ln
T
T0

+ s0 , (64)

where s0 is the entropy at the reference temperature T0.
For the ideal gas, where

(
∂p
∂T

)
p
= R

v and the specific heat depends on T only, entropy assumes

the familiar form

s (T, v) =
∫ T

T0

cv (T′)
T′

dT′ + R ln
v
v0

+ s0 , (65)

For a gas with constant specific heat, the integration can be performed to give

s (T, v) = cv ln
T
T0

+ R ln
v
v0

+ s0 . (66)

Of course, a substance behaves as an ideal gas only for sufficiently low pressures or sufficiently
hight temperatures, so that these relations have a limited range of applicability. In particular for low
temperatures, the ideal gas law and the equations above are not valid.

30. Local Thermodynamic Equilibrium

In the previous sections, we considered homogeneous systems that undergo equilibrium
processes, and discussed how to determine thermodynamic properties of systems in equilibrium
states. To generalize for processes in inhomogeneous systems, we now consider the system as
a compound of sufficiently small subsystems. The key assumption is that each of the subsystems
is in local thermodynamic equilibrium, so that it can be characterized by the same state properties as
a macroscopic equilibrium system. To simplify the proceedings somewhat, we consider numbered
subsystems of finite size, and summation.

The exact argument for evaluation of local thermodynamic equilibrium considers infinitesimal
cells dV, partial differential equations, and, to arrive at the equations for systems, integration.
This detailed approach, known as Linear Irreversible Thermodynamics (LIT), is presented in Appendix C.
The simplified argument below avoids the use of partial differential equations, and aims only on the
equations for systems, hence this might be the preferred approach for use in an early undergraduate
course [8].

Figure 8 indicates the splitting into subsystems, and highlights a subsystem i inside the system
and a subsystem k at the system boundary. Temperature and pressure in the subsystems are given by
Ti, pi and Tk, pk, respectively. Generally, temperature and pressure are inhomogeneous, that is adjacent
subsystems have different temperatures and pressures. Accordingly, each subsystem interacts with its
neighborhood through heat and work transfer as indicated by the arrows. Heat and work exchanged
with the surroundings of the system are indicated as Q̇k and Ẇk.
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Ti; pi

T
k ;

p
k

_Qk

_Wk

Figure 8. Non-equilibrium system split into small equilibrium subsystems. Arrows indicate work and
heat exchange between neighboring elements, and the surroundings.

Internal energy and entropy in a subsystem i are denoted as Ei and Si, and, since both are
extensive, the corresponding quantities for the complete system are obtained by summation over all
subsystems, E = ∑i Ei, S = ∑i Si. Note that in the limit of infinitesimal subsystems the sums become
integrals, as in Section 5. The balances of energy and entropy for a subsystem i read

dEi
dt

= Q̇i − Ẇi ,
dSi
dt

=
Q̇i
Ti

+ Ṡgen,i , (67)

where Q̇i = ∑j Q̇i,j is the net heat exchange, and Ẇi = ∑j Ẇi,j is the net work exchange for the
subsystem. Here, the summation over j indicates the exchange of heat and work with the neighboring
cells, such that, for example, Q̇i,j is the heat that i receives from the neighboring cell j.

The boundary cells of temperatures Tk are either adiabatically isolated to the outside, or they
exchange heat with external systems (reservoirs) of temperature TR,k, which, in fact, are the
temperatures that appear in the 2nd law in the form of Equation (44). For systems in local
thermodynamic equilibrium, temperature differences at boundaries, such at those between a gas
and a container wall, are typically extremely small. Hence, temperature jumps at boundaries are
usually ignored, so that TR,k = Tk, and we will proceed with this assumption. Appendix C.4 provides
a more detailed discussion of temperature jumps and velocity slip within the context of Linear
Irreversible Thermodynamics.

To obtain first and second law for the compound system, we have to sum the corresponding laws
for the subsystems, which gives

dE
dt

= Q̇− Ẇ with Q̇ = ∑
k

Q̇k , Ẇ = ∑
k

Ẇk (68)

and
dS
dt

= ∑
k

Q̇k
Tk

+ Ṡgen with Ṡgen ≥ 0 . (69)

In the above, Q̇k is the heat transferred over a system boundary which has temperature Tk. This subtle
change from Equation (44), which has the reservoir temperatures, results from ignoring temperature
jumps at boundaries. As will be explained next, the summation over k concerns only heat and work
exchange with the surroundings.

Since energy is conserved, the internal exchange of heat and work between subsystems cancels in
the conservation law for energy (68). For instance, in the exchange between neighboring subsystems i
and j, Qi,j is the heat that i receives from j and Wi,j is the work that i does on j. Moreover, Qj,i is the
heat that j receives from i and Wj,i is the work that j does on i. Since energy is conserved, no energy is
added or lost in transfer between i and j, that is Qi,j = −Qj,i and Wi,j = −Wj,i. Accordingly, the sums
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vanish, Qi,j + Qj,i = 0 and Wi,j +Wj,i = 0. Extension of the argument shows that the internal exchange
of heat and work between subsystems adds up to zero, so that only exchange with the surroundings,
indicated by subscript k, appears in (68).

Entropy, however, is not conserved, but may be produced. Exchange of heat and work between
subsystems, if irreversible, will contribute to the entropy generation rate Ṡgen. Thus, the total
entropy generation rate Ṡgen of the compound system is the sum of the entropy generation rates
in the subsystems Ṡgen,i plus additional terms related to the energy transfer between subsystems,
Ṡgen = ∑i Ṡgen,i + ∑i,j Ṡgen,i,j > 0. In simple substances, this internal entropy generation occurs due to
internal heat flow and internal friction.

Strictly speaking, the small temperature differences for heat transfer between system and
boundary, Tk − TR,k contribute to entropy generation as well. In typical applications, the temperature
differences and the associated entropy generation are so small that both can be ignored.

We repeat that entropy generation is strictly positive, Ṡgen > 0, in irreversible processes,
and is zero, Ṡgen = 0, in reversible processes.

To fully quantify entropy generation, that is to compute its actual value, requires the detailed
local computation of all processes inside the system from the conservation laws and the second law as
partial differential equations—this is outlined in Appendix C.

The above derivation of the second law Equation (69) relies on the assumption that the equilibrium
property relations for entropy are valid locally also for nonequilibrium systems. This local equilibrium
hypothesis—equilibrium in a subsystem, but not in the compound system—works well for most systems
in technical thermodynamics. It should be noted that the assumption breaks down for extremely
strong nonequilibrium.

31. Heat Transfer between Reservoirs

In this and the following sections we proceed by considering simple processes with the 1st and 2nd
law in the form (68) and (69) found for systems in local thermodynamic equilibrium. These examples
are shown to highlight the contents of the 2nd law. For instructors who prefer to postulate the 2nd law,
these would be the examples used to show the agreement with daily experience.

We begin with the basic heat transfer process between two reservoirs of thermodynamic
temperatures TH and TL, where TH > TL is the temperature of the hotter system, see Figure 9.
The heat is transferred through a heat conductor, which is the thermodynamic system to be evaluated.
One will expect a temperature gradient in the conductor, that is the conductor is not in a homogeneous
equilibrium state, but in a nonequilibrium state. A pure heat transfer problem is studied, where the
conductor receives the heat flows Q̇H and Q̇L, and exchanges no work with the surroundings, Ẇ = 0.
The first and second law (68) and (69) applied to the heat conductor read

dU
dt

= Q̇L + Q̇H ,
dS
dt
− Q̇L

TL
− Q̇H

TH
= Ṡgen ≥ 0 . (70)

For steady state conditions no changes over time are observed in the conductor, so that dU
dt = dS

dt = 0.
The first law shows that the heat flows must be equal in absolute value, but opposite in sign,

Q̇H = −Q̇L = Q̇ . (71)

With this, the second law reduces to the inequality

Q̇
(

1
TL
− 1

TH

)
= Ṡgen ≥ 0 . (72)

With the thermodynamic temperature TH > TL > 0, the bracket is positive. According to Figure 9 the
proper direction of heat transfer in accordance to Clausius’ statement that heat will go from hot to cold by
itself, but not vice versa (Observation 5) is for Q̇H = −Q̇L = Q̇ > 0.
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_QL

TL

_QH

TH

Figure 9. Heat transfer between two reservoirs at T1 and T2. In steady state the heat conductor does
not accumulate energy, therefore Q̇L = −Q̇H .

Equation (72) shows that heat transfer over finite temperature differences creates entropy inside
the heat conductor. In the steady state case considered here, the entropy created is leaving the system
with the outgoing entropy flow Q̇L

TL
which is larger than the incoming entropy flow Q̇H

TH
. Figure 10 gives

an illustration of the allowed process, where heat goes from hot to cold, and the forbidden process,
where heat would go from cold to hot by itself.

TL

_Q

TH

TH > TL ; _Q > 0

_Q

allowed

TH > TL ; _Q < 0

forbidden

TH

TL

Figure 10. Heat transfer between two reservoirs with TH > TL. Heat must go from warm to cold.

32. Newton’s Law of Cooling

The inequality (72) requires that Q̇ has the same sign as
(

1
TL
− 1

TH

)
, a requirement that is fulfilled

for a heat transfer rate
Q̇ = αA (TH − TL) (73)

with a positive heat transfer coefficient α > 0, and the heat exchange surface area A. This relation is
known as Newton’s law of cooling, and is often used in heat transfer problems. The values of the
positive coefficient α must be found from the detailed configuration and conditions in the heat transfer
system. The surface area A appears due to the intuitive expectation that enlarging the transfer area
leads to a proportional increase in the amount of heat transferred.

Heat transfer was introduced as energy transfer due to temperature difference with heat going
from hot to cold. Newton laws of cooling states that as a result of the temperature difference one will
observe a response, namely the heat flow.

The procedure to deduce Newton’s law of cooling can be described as follows: The entropy
generation rate (72) is interpreted as the product of a thermodynamic force—here, the difference
of inverse temperatures

(
1

TL
− 1

TH

)
—and a corresponding flux—here, the heat flow Q̇. To ensure

positivity of the entropy generation rate, the flux must be proportional to the force, with a positive factor
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αA that must be measured. This is the strategy of Linear Irreversible Thermodynamics, which can
be used for all force-flux pairs, see Appendix C. A thermodynamic force is any deviation from the
equilibrium state, here the temperature difference, which will vanish in equilibrium. A thermodynamic
flux is a response to the force that drives a process towards equilibrium, here the heat flux.

With Newton’s law of cooling it is easy to see that heat transfer over finite temperature differences
is an irreversible process. Indeed, the second law (72) gives with (73)

Ṡgen = Q̇
(

1
TL
− 1

TH

)
= αA

(TH − TL)
2

TLTH
> 0 . (74)

Equation (74) quantifies the entropy generation rate in steady state heat transfer, which, for fixed
heat transfer rate Q̇, grows with the difference of inverse temperatures. Only when the temperature
difference is infinitesimal, that is, TH = TL + dT, entropy generation can be ignored, and heat transfer
can be considered as a reversible process. This can be seen as follows: For infinitesimal dT the entropy

generation rate becomes Ṡgen = αA
(

dT
TL

)2
and heat becomes Q̇ = αAdT. This implies that entropy

generation vanishes with the temperature difference, Ṡgen = 0 (dT → 0). In this case, to have a finite
amount of heat Q̇ transferred, the heat exchange area A must go to infinity.

33. 0th Law and 2nd Law

Above we considered heat transfer between reservoirs, but the conclusion is valid for heat
conduction between arbitrary systems: As long as the systems are in thermal contact through heat
conductors, and their temperatures are different, there will be heat transfer between the systems.
Only when the temperatures of the systems are equal, heat transfer will cease. This is the case of
thermal equilibrium, where no change in time occurs anymore. This includes that the temperature of
an isolated body in thermal equilibrium will be homogeneous, where equilibration occurs through
heat transfer within the system; for the formal argument see Section 40 below.

The 0th law states that in equilibrium systems in thermal contact assume the same temperature.
Thus, the 0th law of thermodynamics might appear as a special case of the 2nd law. It stands in its
own right, however: Not only does it define temperature as a measurable quantity, but it also states
the homogeneity of temperature in equilibrium, which is required to identify the Gibbs equation
in Section 24.

34. Internal Friction

When coffee, or any other liquid, is stirred, it will spin a while after the spoon is removed.
The motion will slow down because of internal friction, and finally the coffee will be at rest in the cup.
We show that the 2nd law describes this well-known behavior, which is observed in all viscous fluids.

With the fluid in motion, all fluid elements have different velocity vectors, that is, the system is
not in a homogeneous equilibrium state. We have to account for the kinetic energy of the swirling,

which must be computed by summation, that is, integration, of the local kinetic energies
ρ(−→r )

2 V
(−→r )2

in all volume elements; see Figure 11. The 1st and 2nd law (68) and (69) now read

d (U + Ekin)

dt
= Q̇− Ẇ ,

dS
dt
−∑

Q̇k
Tk

= Ṡgen ≥ 0 . (75)
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Ekin =

Z
½

2
V

2dV

½ (~r)
dV

V (~r)

Figure 11. The kinetic energy Ekin of a stirred fluid is the sum of the kinetic energies in all volume
elements. Friction with the container wall, and within the fluid, will slow down the fluid until it comes
to rest in the final equilibrium state.

We assume adiabatic systems (Q̇ = 0) without any work exchange (Ẇ = 0, this implies constant
volume), so that

d (U + Ekin)

dt
= 0 ,

dS
dt

= Ṡgen ≥ 0 . (76)

For simplicity we ignore local temperature differences within the stirred substance, and use the Gibbs
Equation (47) so that

dS
dt

=

(
∂S
∂U

)
V

dU
dt

=
1
T

dU
dt

= − 1
T

dEkin
dt

= Ṡgen ≥ 0 . (77)

Since entropy generation and inverse thermodynamic temperature are non-negative, this implies

dEkin
dt

6 0 . (78)

Hence, the kinetic energy Ekin =
∫ ρ

2V2dV decreases over time, and will be zero in equilibrium,
where the stirred substance comes to rest, V = 0.

Here we notice, again, that the sign of thermodynamic temperature is intimately linked to friction:
T > 0 ensures that friction dissipates kinetic energy. The total entropy generation in this process is

Sgen =
∫

Ṡgendt = −
∫ 1

T
dEkin

dt
dt . (79)

35. Uncontrolled Expansion of a Gas

Our next example concerns the uncontrolled expansion of an ideal gas. We consider an ideal gas
in a container which is divided by a membrane, see Figure 12.

ideal gas vacuum ideal gas

=)

T1; p1; V1 T2; p2; V2

Figure 12. Irreversible adiabatic expansion of an ideal gas.

Initially the gas is contained in one part of the container at {T1, p1, V1}, while the other part is
evacuated. The membrane is destroyed, and the gas expands to fill the the container. The fast motion of
the gas is slowed down by internal friction, and in the final homogeneous equilibrium state {T2, p2, V2}
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the gas is at rest and distributed over the total volume of the container. We have no control over the
flow after the membrane is destroyed: this is an irreversible process.

The container is adiabatically enclosed to the exterior, and, since its walls are rigid, no work is
transmitted to the exterior. Thus, the first law for closed systems (11) reduces to

d
(
U + Ekin + Epot

)
dt

= 0 , (80)

or, after integration,
U2 + Ekin,2 + Epot,2 = U1 + Ekin,1 + Epot,1 . (81)

Since the gas it at rest initially and in the end, Ekin,1 = Ekin,2 = 0, and since potential energy has not
changed Epot,1 = Epot,2, the above reduces to U2 = U1. Note, however, that during the process Ekin > 0
and U < U1.

With U = mu, and m = const., the specific internal energy remains unchanged,

u (T1, v1) = u (T2, v2) . (82)

Measurements for ideal gases show that T1 = T2, that is the initial and final temperatures of the gas
are the same. With this, the previous condition becomes

u (T1, v1) = u (T1, v2) , (83)

which can only hold if the internal energy of the ideal gas does not depend on volume. This experiment
verifies that the internal energy of the ideal gas is independent of volume, and depends only on
temperature, u = u (T). In Section 27 we already used this result to show the equivalence of
thermodynamic and ideal gas temperature scales.

The second law for this adiabatic process simply reads

dS
dt

= Ṡgen ≥ 0 . (84)

Integration over the process duration yields

S2 − S1 =
∫ t2

t1

Ṡgendt = Sgen ≥ 0 . (85)

The total change of entropy follows from the ideal gas entropy (66), with T1 = T2, as

S2 − S1 = m (s2 − s1) = mR ln
V2

V1
= mR ln

v2

v1
> 0 . (86)

Since in this process the temperature of the ideal gas remains unchanged, the growth of entropy is
only attributed to the growth in volume: by filling the larger volume V2, the gas assumes a state of
larger entropy. Since the container is adiabatic, there is no transfer of entropy over the boundary

(i.e., ∑ Q̇k
Tk

= 0), and all entropy generated stays within the system, Sgen = S2 − S1.
In this computation, energy and entropy change, and the entropy generated can be determined

from the initial and final equilibrium states. However, the process is irreversible, with states of strong
nonequilibrium along the way. The rate equations for 1st and 2nd law are valid throughout the process,
but do not suffice to determine values for energy and entropy at all moments in time, since they
do not allow to resolve the inhomogeneity of the intermediate states. A detailed prediction of the
process requires a local theory, such as the Navier-Stokes-Fourier equations of Linear Irreversible
Thermodynamics (see Appendix C), or the Boltzmann equation of Kinetic Gas Theory (see Appendix D).
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Values for system energy and entropy can be obtained from the local description through integration
over the system.

36. Irreversibility and Work Loss

The thermodynamic laws for closed systems that exchange heat with an arbitrary number of
reservoirs read

d (U + Ekin)

dt
= Q̇0 + ∑ Q̇k − Ẇ ,

dS
dt
− Q̇0

T0
−∑

Q̇k
Tk

= Ṡgen ≥ 0 , (87)

where the heat exchange Q̇0 with a reservoir at T0 is highlighted. Most thermodynamic engines utilize
the environment as heat source or sink, and in this case Q̇0 should be considered as the heat exchanged
with the environment. Note that the environment is freely available, and no cost is associated with
removing heat from, or rejecting heat into, the environment. Moreover the environment is large
compared to any system interacting with it, hence its temperature T0 remains constant.

Elimination of Q̇0 between the two laws and solving for work gives

Ẇ = ∑
(

1− T0

Tk

)
Q̇k −

d (U + Ekin − T0S)
dt

− T0Ṡgen . (88)

This equation applies to arbitrary processes in closed systems. The generation of entropy in irreversible
processes reduces the work output of work producing devices (where Ẇ > 0, for example, heat engines)
and increases the work requirement of work consuming devices (where Ẇ < 0, for example,
heat pumps and refrigerators). We note the appearance of the Carnot factor

(
1− T0

Tk

)
multiplying the

heating rates Q̇k.
The amount of work lost to irreversible processes is

Ẇloss = T0Ṡgen ≥ 0 , (89)

sometimes it is denoted as the irreversibility. It is an important engineering task to identify and quantify
the irreversible work losses, and to reduce them by redesigning the system, or use of alternative
processes. Loss analysis is an important part of technical thermodynamics that is featured in modern
textbooks [8,23].

Entropy generation is due to friction, heat transfer over finite temperature differences, mixing,
chemical reactions, and so forth. Full quantification of the entropy generation in nonequilibrium
processes requires resolution of the process at all times, that is, solution of local transport equations
(Navier-Stokes-Fourier, etc.). Nevertheless, already at the system level, loss analysis can lead to deeper
insight into possibilities for process improvement.

The discussion of heat engines, refrigerators and heat pumps operating at steady state between
two reservoirs, in particular of Carnot engines, is an important element of thermodynamic analysis.
With the 1st and 2nd law in place, this is a special case of the above Equation (88), as is discussed next.

37. Heat Engines, Refrigerators, Heat Pumps

Engines operating at steady state between two reservoirs, one of them the environment, are shown
in Figure 13, namely a heat engine (HE), a refrigerator (R), and a heat pump (HP). We discuss these
engines with the combined 1st and 2nd law (88).
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Figure 13. Heat engine (HE), refrigerator (R), and heat pump (HP) in contact with the environment
at T0.

For a heat engine that receives the heat Q̇H from a hot reservoir at TH > T0, and rejects heat into
the environment at T0, the actual power produced is

Ẇ =

(
1− T0

TH

)
Q̇H − T0Ṡgen > 0 , (90)

where T0Ṡgen ≥ 0 is work loss to irreversibilities. A Carnot engine, named after Sadi Carnot (1796–1832),
is a fully reversible engine, that is, it has no irreversible losses and provides the power

Ẇrev =

(
1− T0

TH

)
Q̇H > 0 . (91)

The thermal efficiency is defined as the ratio of work produced (the gain) over heat input (the expense),
η = Ẇ/Q̇H , and we find the thermal efficiency of the Carnot engine as

ηC =
Ẇrev

Q̇H
= 1− T0

TH
< 1 . (92)

For a refrigerator that removes the heat Q̇L from a cold space at TL < T0 and rejects heat into the
environment at T0, the power requirement is

Ẇ =

(
1− T0

TL

)
Q̇L − T0Ṡgen < 0 , (93)

where T0Ṡgen ≥ 0 is the extra work required to overcome irreversibilities. A fully reversible refrigerator,
that is, a Carnot refrigerator, requires the power

Ẇrev =

(
1− T0

TL

)
Q̇L < 0 . (94)

The coefficient of performance of a refrigerator is defined as the ratio of heat drawn from the cold
(the gain) over work input (the expense), COPR = Q̇L/

∣∣Ẇ∣∣, and we find the coefficient of performance
of the Carnot refrigerator as
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COPR,C =
Q̇L∣∣Ẇrev

∣∣ = 1
T0
TL
− 1

. (95)

For a heat pump that supplies the heat Q̇H to a warm space at TH > T0 and draws heat from the
environment at T0, the power requirement is

Ẇ =

(
1− T0

TH

)
Q̇H − T0Ṡgen < 0 , (96)

where T0Ṡgen ≥ 0 is the extra work required to overcome irreversibilities. A fully reversible heat pump,
that is, a Carnot heat pump, requires the power

Ẇrev =

(
1− T0

TH

)
Q̇H < 0 . (97)

The coefficient of performance of a heat pump is defined as the ratio between the heat provided
(the gain) and the work input (the expense), COPHP =

∣∣Q̇H
∣∣ /
∣∣Ẇ∣∣, and we find the coefficient of

performance of the Carnot heat pump as

COPHP,C =

∣∣Q̇H
∣∣∣∣Ẇrev
∣∣ = 1

1− T0
TH

> 1 . (98)

Due to irreversible losses, real engines always have lower efficiencies or coefficients of
performance than the (fully reversible) Carnot engines operating between the same temperatures.
While Carnot efficiencies cannot be reached—all real engines are irreversible—they serve as
important benchmarks.

It must be emphasized that in the present approach the discussion of engines comes well after the
2nd law of thermodynamics is established. The classical Carnot-Clausius argument for finding the
2nd law puts engines front and center, which requires long discussion of processes and cycles before
the 2nd law can be finally presented [2–5]. The present approach, where the 2nd law is derived from
simple Observations 1–5, requires far less background and allows to introduce the 2nd law soon after
the 1st law, so that both laws are available for the evaluation of all processes, cycles and engines right
away, see also References [6–8]. Note that the above analysis of heat engine, refrigerator and heat
pump does not require any details on the processes inside the engines.

38. Kelvin-Planck and Clausius Statements

The temperature difference between reservoirs provides the thermodynamic force that induces
heat flux from hot to cold, due to the desire to equilibrate temperature. A heat engine converts a portion
of this heat flux into work. That is, the nonequilbrium between reservoirs is essential for the process.

Not all heat received from the hot reservoir can be converted into work, some heat must be
rejected to a colder reservoir. The Kelvin-Planck formulation of the second law states this as: No steady
state thermodynamic process is possible in which heat is completely converted into work.

This statement is a direct consequence of the 1st and 2nd law. For a steady state process with just
one heat exchange the laws require

− Q̇H
TH

= − Ẇ
TH

= Ṡgen ≥ 0 , (99)

hence heat and work must both be negative. Figure 14 shows the forbidden process, and also
the—allowed—inverse process, the complete conversion of work into heat through friction. A typical
example for the latter are resistance heaters in which electrical work is converted to heat through
electric resistance (heat pump with COPRH =

∣∣Q̇H
∣∣ /
∣∣Ẇ∣∣ = 1).
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Figure 14. Heat cannot be completely converted into work, but work can be completely converted
to heat.

Clausius’ statement of the second law says that heat will not go from cold to warm by itself.
This statement was used explicitly in our development of the 2nd law (Observation 5). Note that the
two words “by itself” are important here—a heat pump system can transfer heat from cold to warm,
but work must be supplied, so the heat transfer is not “by itself.”

It is straightforward to show that both statements are equivalent [2,8].

39. Finding Equilibrium States

With the laws of thermodynamics now in place, we can use them to learn more about the
equilibrium states that will be observed. For an isolated system, 1st and 2nd law reduce to

dE
dt

= 0 ,
dS
dt

= Ṡgen ≥ 0 , (100)

with a constant mass m in the system. Since no work is exchanged, the system volume V must be
constant as well. According to the second law, the state of the system will change (with Ṡgen > 0) until
the entropy has reached a maximum (when Ṡgen = 0), where the process is restricted by having the
initial mass, momentum and energy enclosed in the system. Starting with an arbitrary inhomogeneous
initial state, the approach to equilibrium is a reorganization of the local properties of the system
towards the final equilibrium state, which we will determine now for a single phase system.

Total mass, energy and entropy are obtained by integration over the full system,

m =
∫

V
ρdV , E =

∫
V

ρ

(
u +

1
2
V2 + gnz

)
dV , S =

∫
V

ρsdV . (101)

Here, ρ, T, V , and u (ρ, T), s (ρ, T) are the local values of the thermodynamic properties, that is,
ρ = ρ

(−→r ), T = T
(−→r ) ,V

(−→r ) and so forth, where −→r is the location in the volume V of the system,
see Section 5. The gravitational acceleration gn should not be confused with the Gibbs free energy g.

Often we are interested in systems that are globally at rest, where the overall momentum
−→
M

vanishes, but we might consider also systems moving with a constant velocity −→v , so that
−→
M = m−→v .

Since all elements of the system have their own velocity
−→V
(−→r ), we find the total momentum by

summing over the system,
−→
M = m−→v =

∫
V

ρ
−→V dV ; (102)

here
−→V
(−→r ) is the local velocity vector with absolute value V =

√−→V · −→V . As long as no forces act
on the system, its momentum will be constant; total momentum vanishes for a system at rest in the
observer frame,

−→
M = 0.
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The equilibrium state is the maximum of entropy S under the constraints of given mass m,
momentum

−→
M, and energy E. The best way to account for the constraints is the use of Lagrange

multipliers Λρ,
−→
Λ M and ΛE to incorporate the constraints and maximize not S but

Φ =
∫

V
ρsdV −Λρ

(∫
V

ρdV −m
)
−−→Λ M ·

(∫
V

ρ
−→V dV −−→M

)
−ΛE

(∫
V

ρ

(
u +

1
2
V2 + gnz

)
dV − E

)
. (103)

The maximization of Φ will give the local values of the thermodynamic equilibrium properties
{ρ, T,V} in terms of the Lagrange multipliers, which then must be determined from the given values
of
{

m,
−→
M, E

}
.

For the solution of this problem, we employ the methods of variational calculus. For compact
notation, we introduce the abbreviations y

(−→r ) = {ρ,
−→V , T

}
and

X (y) = ρ

[
s−Λρ −

−→
Λ M ·

−→V −ΛE

(
u +

1
2
V2 + gnz

)]
. (104)

The equilibrium state maximizes the integral
∫

V X (y) dV. We denote the equilibrium state as
yE
(−→r ) and consider small variations δy

(−→r ) from the equilibrium state, so that y = yE + δy. By means
of a Taylor series we find

∫
V

X (y) dV =
∫

V

[
X (yE) +

(
∂X
∂y

)
|E

δy +
1
2

(
∂2X
∂y∂y

)
|E

δyδy

]
dV (105)

Since yE maximizes the integral, the other terms on the right hand side must be negative for arbitrary
values of the variation δy (~r), which implies

(
∂X
∂y

)
|E

= 0 and negative definiteness of the matrix(
∂2X
∂y∂y

)
|E

. We proceed with the evaluation of the first condition, and leave the discussion of the second

conditions for Section 41.
The conditions for equilibrium read(

∂X
∂y

)
|E

=

{
∂X
∂ρ

,
∂X

∂
−→V

,
∂X
∂T

}
|E

= 0 . (106)

These and the following relations are valid for the equilibrium values, T|E, ρ|E, u|E, V|E, s|E and
so forth. For better readability, the subscripts |E referring to the equilibrium state are not shown.
Evaluation yields

∂X
∂ρ

=

[
s−Λρ − ~ΛM ·

−→V −ΛE

(
u +

1
2
V2 + gnz

)]
+ ρ

[(
∂s
∂ρ

)
T
−ΛE

(
∂u
∂ρ

)
T

]
= 0 , (107)

∂X

∂
−→V

= ρ
[
−−→Λ M −ΛE

−→V
]
= 0 . (108)

∂X
∂T

= ρ

[(
∂s
∂T

)
ρ

−ΛE

(
∂u
∂T

)
ρ

]
= 0 . (109)

40. Homogeneous Equilibrium States

We proceed with evaluating the three conditions (107)–(109) to find the stable equilibrium state.
For convenience, we begin with the middle Equation (108), which gives homogeneous velocity in
equilibrium,
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−→V = −
−→
Λ M
ΛE

. (110)

For the case of a system at rest, where

0 =
−→
M =

∫
V

ρ
−→V dV = −

−→
Λ M
ΛE

∫
V

ρdV = −
−→
Λ M
ΛE

m , (111)

this implies that in equilibrium all local elements are at rest,
−→V =

−→
Λ M =

−→
M = 0.

With the Gibbs equation, the last condition (109) becomes(
∂s
∂T

)
ρ

−ΛE

(
∂u
∂T

)
ρ

=
1
T

(
∂u
∂T

)
ρ

−ΛE

(
∂u
∂T

)
ρ

= 0 . (112)

It follows that in equilibrium the temperature is homogeneous, and equal to the inverse
Lagrange multiplier,

T =
1

ΛE
. (113)

To evaluate the first condition, (107), we insert the above results for ΛE, ~ΛM,
−→V and use again the

Gibbs equation, which gives
(

∂s
∂ρ

)
T
− 1

T

(
∂u
∂ρ

)
T
= − p

Tρ2 . After some reordering, we find

g + gnz = u− Ts +
p
ρ
+ gnz = −TΛρ , (114)

where g is the Gibbs free energy, and gn is gravitational acceleration. Thus, the sum of specific Gibbs
free energy and specific potential energy, g + gnz, is homogeneous in equilibrium, while density and
pressure might be inhomogeneous.

In summary, maximizing entropy in the isolated system yields that the system is fully at rest,
V = 0, has homogeneous temperature, T = 1/ΛE, and, in the gravitational field, has inhomogeneous
density and pressure, given implicitly by g (T, ρ) + gnz = −TΛρ. The Lagrange multipliers must be
determined from the constraints (101), their values depend on the size and geometry of the system.

Equilibrium states of systems in contact with the environment, for example, with prescribed
boundary temperatures or pressures are determined similarly, this includes systems with several
phases [8].

To gain insight into the influence of potential energy, we evaluate (114) for ideal gases
and incompressible fluids. For an ideal gas, the Gibbs free energy is g (ρ, T) = h (T) −
T
(∫ T

T0

cv(T′)
T′ dT′ − R ln ρ

ρ0
+ s0

)
. Using this in (114) and solving for density gives the

barometric formula,
ρ = ρ0 exp

[
− gnz

RT

]
, (115)

where ρ0 = ρ0 exp

−Λρ

R −
h(T)−T

(∫ T
T0

cv(T′)
T′ dT′+s0

)
RT

 is the density at reference height z = 0. The ideal

gas law gives the corresponding expression for pressure as

p = p0 exp
[
− gnz

RT

]
, (116)

where p0 = ρ0RT is the pressure at z = 0. This is the well known barometric formula [8].
Pressure variation of gases in the gravitational field is relatively small. In technical systems with a size
of few metres, the variation is so small that one can assume homogeneous pressures. When climbing
a mountain (say), the pressure variation is important, of course.
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For incompressible fluids, ρ = const., and internal energy and entropy depend only on
temperature, so that the Gibbs free energy is g (T, p) = u (T) + p

ρ − Ts (T). Using this in (114) and
solving for pressure gives the hydrostatic pressure formula,

p = p0 − ρgnz , (117)

where p0 = ρT
[
s (T)− u (T) /T −Λρ

]
is the pressure at reference height z = 0. This is the well

known hydrostatic pressure [8].

41. Thermodynamic Stability

The equilibrium state must be stable, which means that, indeed, it must be the maximum of the
integral Φ (103). This requires that the second variation of Φ must be negative. In our case, where the
integrand X depends only on y, this requires negative eigenvalues for the matrix of second derivatives
∂2X/∂y2 at the location of the maximum. With the help of the Gibbs equation, the second derivatives
can be written as

∂X
∂ρ2 =

[
1
T
−ΛE

] [
2
(

∂u
∂ρ

)
T
+ ρ

(
∂2u
∂ρ2

)
T

]
− 1

ρT

(
∂p
∂ρ

)
T

,

∂2X

∂
−→V 2

= −ρΛE ,

∂2X
∂T2 = ρ

[
1
T
−ΛE

] (
∂2u
∂T2

)
ρ

− ρ

T2

(
∂u
∂T

)
ρ

, (118)

∂2X
∂ρ∂T

=
∂2X
∂T∂ρ

=

[
1
T
−ΛE

] (
∂u
∂T

)
ρ

,

∂X

∂ρ∂
−→V

=
∂X

∂
−→V ∂ρ

= −−→Λ M −ΛE
−→V ,

∂X

∂T∂
−→V

=
∂X

∂
−→V ∂T

= 0 .

These must now be evaluated at the equilibrium state, T = 1/ΛE and
−→V = −−→Λ M/ΛE. All mixed

derivatives vanish in equilibrium, hence the requirement reduces to negative values for the diagonal
elements. With the definitions of isothermal compressibility κT = − 1

v

(
∂v
∂p

)
T

and the specific heat at

constant volume cv =
(

∂u
∂T

)
v
, the resulting conditions read

∂X
∂ρ2

|eq
= − 1

ρT

(
∂p
∂ρ

)
T
= − 1

ρ2TκT
< 0 ,

∂2X

∂
−→V 2 |eq

= − ρ

T
< 0 , (119)

∂2X
∂T2 |eq

= − ρ

T2

(
∂u
∂T

)
ρ

= − ρ

T2 cv < 0 ;

With the mass density being positive, thermodynamic stability thus requires that isothermal
compressibility, specific heat, and thermodynamic temperature are positive,

κT > 0 , cv > 0 , T > 0 . (120)

These conditions imply that the volume decreases when pressure is increased isothermally, and that the
temperature rises when heat is added to the system. Once more we see that positivity of thermodynamic
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temperature guarantees dissipation of kinetic energy. The stability conditions (120) imply that s (u, v)
is a concave function, as shown in Appendix B.

42. Open Systems

So far we have considered only closed systems, which do not exchange mass. We shall now
extend the discussion to systems which exchange mass with their surroundings. Figure 15 shows
a generic open system with two inflows and two outflows. The amount of mass exchanged per unit
time, the mass transfer rate or mass flow, is denoted by ṁ. The system also exchanges propeller and
piston work, Ẇ = Ẇpropeller + Ẇpiston, and heat, Q̇ = Q̇1 + Q̇2, with its surroundings, just as a closed
system does.

_Wpropeller

_Wpiston

_Q1
_Q2

_m1

in

_m2

in

_m1

out

_m2

out

Figure 15. Open system with two inflows, two outflows and two heat sources. The dotted line indicates
the system boundary.

States in open systems are normally inhomogeneous. One might think of a mass element entering
the system of Figure 15 on the left. As the element travels through the system, it constantly changes its
state: When it passes the heating, its temperature changes, when it passes the propeller its pressure and
temperature change, and so on. Thus, at each location within the system one finds different properties.
As discussed earlier, an inhomogeneous system is in a nonequilibrium state. In an open system the
nonequilibrium is maintained through the exchange of mass, heat and work with the surroundings.

The equations for open systems presented below are those typically found in thermodynamics
textbooks. These rely on a number of simplifying assumptions, such as use of average values for
properties and ignore of viscous stresses across inlets and exits, which will only be mentioned, but will
not be discussed in detail [8].

43. Balances of Mass, Energy and Entropy

Mass cannot be created or destroyed, that is mass is conserved. Chemical reactions change the
composition of the material, but not its mass. In a closed system, the law of mass conservation states
that the total mass m in the system does not change in time, that is, it simply reads dm

dt = 0. In an open
system, where mass enters or leaves over the system boundaries, the conservation law for mass
states that the change of mass in time is due to inflow—which increases mass—and outflow—which
decreases system mass. In approximation, the mass flow can be written as

ṁ = ρ V A , (121)

where ρ and V are averages of mass density and velocity over the cross section A of the
in/outflow boundary.
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The rate of change in mass is due to the net difference of mass flows entering and leaving
the system,

dm
dt

= ∑
in

ṁi −∑
out

ṁe . (122)

The indices (i, e) indicate the values of the properties at the location where the respective flows cross
the system boundary, that is their average values at the inlets and outlets, respectively.

The total energy E of an open system changes due to exchange of heat and work, and due to
convective energy transport Ė, that is energy carried in or out by the mass crossing the system boundary,

Ė = ṁe = ṁ
(

u +
1
2
V2 + gnz

)
. (123)

The power required to push mass over the system boundary is the force required times the velocity.
The force is the local pressure (irreversible stresses are ignored) times the cross section, thus the
associated flow work is

Ẇ f low = − (pA)V = − p
ρ

ṁ . (124)

Work is done to the system when mass is entering, then Ẇ f low must be negative. The system does
work to push leaving mass out, then Ẇ f low must be positive. Accordingly, flow work points opposite
to mass flow, which is ensured by the minus sign in the equation.

Thus, in comparison to the energy balance for closed systems, the energy balance for the general
open system of Figure 15 has additional contributions to account for convective energy transport and
flow work, in condensed notation

dE
dt

= Q̇− Ẇ + ∑
in/out

Ė− ∑
in/out

Ẇ f low , (125)

where the sums have to be taken over all flows crossing the system boundary.
Explicitly accounting for mass flows leaving and entering the system, and with enthalpy

h = u + p/ρ, the 1st law—the balance of energy—for the general open system becomes

dE
dt

= ∑
in

ṁi

(
h +

1
2
V2 + gnz

)
i
−∑

out
ṁe

(
h +

1
2
V2 + gnz

)
e
+ Q̇− Ẇ . (126)

This equation states that the energy E within the system changes due to convective inflow and outflow,
as well as due to heat transfer and work. Note that the flow energy includes the flow work required to
move the mass across the boundaries (124). Moreover, there can be several contributions to work and
heat transfer, that is Ẇ = ∑j Ẇj and Q̇ = ∑k Q̇k.

All mass that is entering or leaving the system carries entropy. The entropy flow associated with
a mass flow is simply Ṡ = ṁs, where s is the average specific entropy at the respective inlet or outlet.
Adding the appropriate terms for inflow and outflow to the 2nd law (69) for closed systems yields the
2nd law—the balance of entropy—for open systems as

dS
dt

= ∑
in

ṁisi −∑
out

ṁese + ∑
k

Q̇k
Tk

+ Ṡgen with Ṡgen ≥ 0 . (127)

This equation states that the entropy S within the system changes due to convective inflow and outflow,
as well as due to entropy transfer caused by heat transfer (Q̇k/Tk) and entropy generation due to
irreversible processes inside the system (Ṡgen ≥ 0). If all processes within the system are reversible,
the entropy generation vanishes (Ṡgen = 0). Recall that Q̇k is the heat that crosses the system boundary
where the boundary temperature is Tk.
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44. One Inlet, One Exit Systems

A case of particular interest are steady-state systems with only one inlet and one exit, as sketched
in Figure 16, for which the mass balance reduces to

ṁin = ṁout = ṁ . (128)

There is just one constant mass flow ṁ flowing through each cross section of the system.
For a steady state system, the corresponding forms for energy and entropy balance are

ṁ
[

h2 − h1 +
1
2

(
V2

2 − V2
1

)
+ gn (z2 − z1)

]
= Q̇12 − Ẇ12 , (129)

ṁ (s2 − s1)−∑
k

Q̇k
Tk

= Ṡgen ≥ 0 . (130)

It is instructive to study the equations for an infinitesimal step within the system, that is,
for infinitesimal system length dx, where the differences reduce to differentials,

ṁ
(

dh +
1
2

dV2 + gndz
)

= δQ̇− δẆ , (131)

ṁds− δQ̇
T

= δṠgen . (132)

Heat and power exchanged, and entropy generated, in an infinitesimal step along the system are
process dependent, and as always we write (δQ̇, δẆ, δṠ) to indicate that these quantities are not exact
differentials. Use of the Gibbs equation in the form Tds = dh− vdp allows to eliminate dh and δQ̇
between the two equations to give an expression for power,

δẆ = −ṁ
(

vdp +
1
2

dV2 + gndz
)
− TδṠgen . (133)

The total power for the finite system follows from integration over the length of the system as

Ẇ12 = −ṁ
∫ 2

1

(
vdp +

1
2

dV2 + gndz
)
−
∫ 2

1
TδṠgen . (134)

Since TδṠgen ≥ 0, we see—again—that irreversibilities reduce the power output of a power producing
device (where Ẇ12 > 0), and increase the power demand of a power consuming device (where Ẇ12 < 0).
Efficient energy conversion requires to reduce irreversibilities as much as possible.

When we consider (133) for a flow without work, we find Bernoulli’s equation (Daniel Bernoulli,
1700–1782) for pipe flows as

vdp +
1
2

dV2 + gndz = − 1
ṁ

TδṠgen . (135)

The Bernoulli equation is probably easier to recognize in its integrated form for incompressible fluids
(where v = 1

ρ = const.),

gn (H2 − H1) =
p2 − p1

ρ
+

1
2

(
V2

2 − V2
1

)
+ gn (z2 − z1) = −

1
ṁ

∫ 2

1
TδṠgen . (136)

Here, H = p
ρgn

+ 1
2
V2

gn
+ z denotes hydraulic head. The right hand side describes loss of hydraulic head

due to irreversible processes, in particular friction.
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Finally, for reversible processes—where δṠgen = 0 in (134)—we find the reversible steady-flow work

Ẇrev
12 = −ṁ

∫ 2

1

(
vdp +

1
2

dV2 + gndz
)

. (137)

For flows at relatively low velocities and without significant change of level the above relation can be
simplified to

Ẇrev
12 = ṁwrev

12 = −ṁ
∫ 2

1
vdp . (138)

In a p-v-diagram, the specific reversible flow work wrev
12 is the area to the left of the process curve.

The heat exchanged in a reversible process in a steady-state, one inlet, one exit system follows
from the integration of the second law (132) with δṠgen = 0 as

Q̇rev
12 =

∫ 2

1
δQ̇rev = ṁ

∫ 2

1
Tds = ṁqrev

12 . (139)

In a T-s-diagram, qrev
12 is the area below the process curve, just as in a closed system.

_W12
_Q12

_m _m

1 2

Figure 16. Typical one-inlet-one-exit system.

45. Entropy Generation in Mass Transfer

Friction in flows leads to loss of pressure and corresponding entropy generation.
When we consider a simple flow with no work added or withdrawn, Equation (135) gives the entropy
generated in dx as

δṠgen = − ṁ
T

(
vdp +

1
2

dV2 + gndz
)

. (140)

The total entropy generated in a finite system is

Ṡgen = −ṁ
∫ out

in

1
T

(
vdp +

1
2

dV2 + gndz
)

. (141)

For a system where kinetic and potential energy are unimportant, this reduces to

Ṡgen = −ṁ
∫ out

in

v
T

dp . (142)

Once more, we interpret the entropy generation rate as the product of a flux, the mass flow
ṁ, and a thermodynamic force, namely the integral over − v

T dp. Here, pressure in equilibrium
is homogeneous, since gravitation is ignored. Deviation from homogeneous pressure is the
thermodynamic force that induces a mass flow to equilibrate pressure.

Since specific volume v and thermodynamic temperature T are strictly positive, the force is
proportional to the pressure difference,−

∫ out
in

v
T dp ∝ (pin − pout). In order to obtain a positive entropy
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generation rate, linear irreversible thermodynamics suggests that the mass flow be proportional to the
force, which is the case for

ṁ = ζA (pin − pout) = ζA∆p . (143)

Here, A is the mass transfer area and ζ > 0 is a positive transport coefficient that must be measured.
One particular example for this law is the Hagen-Poiseuille relation (Gotthilf Hagen, 1797–1884;

Jean Poiseuille, 1797–1869) of fluid dynamics which gives the volume flow V̇ = ṁ/ρ of a fluid with
shear viscosity µ through a pipe of radius R and length L as

V̇ =
πR4

8µL
∆p . (144)

Another example for (143) is Darcy’s law (Henry Darcy, 1803-1858) that describes flow through
porous media. Then A is the cross section of the porous medium considered, and ζ is a coefficient
of permeability.

Real processes are irreversible, and produce entropy. For a simple flow, the work loss to
irreversibilities is

Ẇloss =
∫ out

in
TδṠgen . (145)

Since δṠgen = − ṁ
T vdp, for isothermal flow of an incompressible liquid, entropy generation and

work loss are

Ṡgen =
V̇
T
(pin − pout) , Ẇloss = V̇ (pin − pout) , (146)

where V̇ = ṁv is the volume flow.
For an ideal gas flow, we have instead

Ṡgen = ṁR ln
pin
pout

, Ẇloss = −ṁ
∫ 2

1
vdp . (147)

46. Global and Local Thermodynamics

From the very beginning of the discussion, we have emphasized entropy as a property describing
equilibrium and nonequilibrium states. In that, it does not differ from other properties, such as mass
density, momentum, or energy, which all are well defined in nonequilibrium. Nonequilibrium states
typically are inhomogeneous, hence all properties must be defined locally, for example, as specific
properties for the volume element dV.

Most thermodynamic systems, and certainly those of engineering interest, involve inhomogeneous
states. While a lot can be learned about these systems by considering the thermodynamic laws
for the system, for example, the global laws (122), (126) and (127), a complete understanding of
a thermodynamic system requires the look inside, that is the complete resolution of local properties at
all times, such as mass density ρ (~r, t), velocity ~V (~r, t), temperature T (~r, t). In transport theories such
as Fluid Dynamics or Heat Transfer the local conservation laws are solved, their numerical solution is
known as Computational Fluid Dynamics (CFD).

The topic of Nonequilibrium Thermodynamics is to identify the transport equations needed, and the
constitutive equations required for their closure.

The Navier-Stokes-Fourier equations of classical thermo- and fluid dynamics are derived in
the theory of Linear Irreversible Thermodynamics (LIT), which relies on the assumption of local
thermodynamic equilibrium. A short outline of LIT is presented in Appendix C. The method combines
the Gibbs equation with local conservation laws to find the balance law for entropy. Constitutive
equations for stress tensor and heat flux are constructed such that the local entropy generation is
always positive. Thus, the method provides not only transport equations, but also the accompanying
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2nd law. The global laws as formulated above (122), (126) and (127) result from integration over system
volume (with some simplifying assumptions).

Appendix C.4 also has a short discussion on boundary conditions for fluids and gases,
where evaluation of the 2nd law suggests temperature jumps and velocity slip at the interface between
a fluid and a wall.

Systems in local thermodynamic equilibrium, but global nonequilibrium, are relatively easy to
describe, since the thermal and caloric equations of state, and the Gibbs equation, which are well-known
from equilibrium thermodynamics, remain valid locally. Considering that equilibrium is approached
over time, one will expect that local equilibrium states will be observed when the changes in the
system, for example, the manipulation at system boundaries, are sufficiently slow, and gradients are
sufficiently flat.

For systems with fast changes, and steep gradients, one will not encounter local equilibrium
states, hence the equilibrium property relations cannot be used for their description. The question
of determining the local property relations, and the transport equations, for systems in strong
nonequilibrium is the subject of modern nonequilibrium thermodynamics. The answers depend
on the school, and the material considered—a rarefied gas behaves differently from a visco-elastic
fluid. Overarching frameworks are available, such as Extended Thermodynamics [20,21], or GENERIC
(general equation for the nonequilibrium reversible-irreversible coupling) [22]. These include the
equations of classical linear irreversible thermodynamics as proper limits, but go well beyond these.
They typically include nonequilibrium property relations, often use an extended set of variables
to describe the nonequilibrium state, and invariably include a formulation of the 2nd law, with
nonequilibrium relations for entropy and its flux. Here is not the point to discuss this further, the cited
books are good starting points for further inquiry.

47. Kinetic Theory of Gases

Instructive insights into the 2nd law can be found in Boltzmann’s Kinetic Theory of Gases,
which describes a gas as an ensemble of particles that move in space, and collide among themselves
and with walls. An abridged and simplified overview of some aspects of the theory for ideal
monatomic gases is presented in Appendix D. The Boltzmann equation describes the time-space
evolution of the gas towards an equilibrium state from the microscopic viewpoint. The macroscopic
conservation laws for mass, momentum and energy are obtained from suitable averages of the
Boltzmann equation. The equations for local thermodynamic equilibrium can be obtained from suitable
limits (small Knudsen number), in full agreement with LIT.

Boltzmann’s celebrated H-theorem identifies a macroscopic quantity which has all properties of
entropy, and, in our opinion is entropy, indeed. In particular, the H-function obeys a balance law with
non-negative production, and in equilibrium it reduces to the equilibrium entropy of an ideal gas.
The Boltzmann entropy is defined for arbitrary states, including all inhomogeneous nonequilibrium
states far from local equilibrium, in agreement with our assumption on entropy throughout.

The underlying microscopic picture provides an interpretation for entropy, a quantity that arose
first from purely phenomenological considerations. This interpretation is the topic of the next sections.

48. What is Entropy?

The arguments that gave us the second law and entropy as a property centered around the trend to
equilibrium observed in any system left to itself (isolated system). Based on the derivation, the question
What is entropy? can be answered simply by saying it is a quantity that arises when one constructs
an inequality that describes the trend to equilibrium. Can there be a deeper understanding of entropy?

Before we try to answer, we look at internal energy—when the first law of thermodynamics
was found, the concept of internal energy was new, and it was difficult to understand what it might
describe. At that time, the atomic structure of matter was not known, and internal energy could not be
interpreted—it appeared because it served well to describe the phenomena. Today we know more,
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and we understand internal energy as the kinetic, potential, and quantum energies of atoms and
molecules on the microscopic level. Thus, while the concept of internal energy arose from the desire to
describe phenomena, today it is relatively easy to understand, because it has a macroscopic analogue
in mechanics.

Entropy also came into play to describe the phenomena, but it is a new quantity, without a
mechanical analogue. A deeper understanding of entropy can be gained, as for internal energy,
from considerations on the atomic scale. Within the framework of his Kinetic Theory of Gases, Ludwig
Boltzmann (1844–1905) found the microscopic interpretation of entropy (see Appendix D).

Macroscopically, a state is described by only a few macroscopic properties, for example,
temperature, pressure, volume. Microscopically, a state is described through the location and
momentum of all atoms within the system. The microscopic state is constantly changing due to
the microscopic motion of the atoms, and there are many microscopic states that describe the same
macroscopic state. If we denote the total number of all microscopic states that describe the same
macroscopic state by Ω, then the entropy of the macroscopic state according to Boltzmann is

S = kB ln Ω . (148)

The constant kB = R̄/A = 1.3804× 10−23 J
K is the Boltzmann constant, which can be interpreted as the

gas constant per particle; A = 6.022× 1023 1
mol is the Avogadro constant.

The growth of entropy in an isolated system, dS
dt ≥ 0, thus means that the system shifts to

macrostates which have larger numbers of microscopic realizations. As we will see, equilibrium states
have particularly large numbers of realizations, and this is why they are observed.

49. Ideal Gas Entropy

To make the ideas somewhat clearer, we consider the expansion of a gas when a barrier is removed,
see Section 35. This is a particularly simple case, where the internal energy, and thus the distribution
of energy over the particles, does not change. Hence, we can ignore the distribution of thermal energy
over the particles, and the exchange of energy between them.

We assume a system of N gas particles in a volume V. The volume of a single particle is v0, and in
order to be able to compute the number Ω, we “quantize” the accessible volume V into n = V/v0

boxes that each can accommodate just one particle. Note that in a gas most boxes are empty. Due to
their thermal energy, the atoms move from box to box. The number of microstates is simply given by
the number of realizations of a state with N filled boxes and (n− N) empty boxes, which is

Ω (N, V) =
n!

N! (n− N)!
. (149)

By means of Stirling’s formula ln x! = x ln x− x (for x � 1) the entropy (148) for this state becomes

S (N, V) = kB

[
−N ln

N
n
− (n− N) ln

(
1− N

n

)]
. (150)

Now we can compute the change of entropy with volume. For this, we consider the same N
particles in two different volumes, V1 = n1v0 and V2 = n2v0. The entropy difference S2 − S1 =

S (N, V2)− S (N, V1) between the two states is

S2 − S1 = kB

N ln
n2

n1
+ n1 ln

(
1− N

n1

)
− n2 ln

(
1− N

n2

)
+ N ln

(
1− N

n2

)
(

1− N
n1

)
 . (151)

In an ideal gas the number of possible positions n is much bigger than the number of particles N,
that is N

n1
� 1, N

n2
� 1. Taylor expansion yields the entropy difference to leading order as
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S2 − S1 = kBN ln
n2

n1
= mR ln

V2

V1
, (152)

where we reintroduced volume (V1,2 = n1,2v0), and introduced the mass as m = M N/A; R = R̄/M is
the gas constant. This is just the change of entropy computed in Section 35.

50. Homogeneous vs. Inhomogeneous States

It is instructive to compare the number of realizations for the two cases, for which we find

Ω2

Ω1
= exp

S2 − S1

k
= exp

(
N ln

V2

V1

)
=

(
V2

V1

)N
. (153)

For a macroscopic amount of gas, the particle number N is extremely large (order of magnitude
∼1023), so that already for a small difference in volume the ratio of microscopic realization numbers is
enormous. For instance for V2 = 2V1, we find Ω2

Ω1
= 2N .

Microscopic states change constantly due to travel of, and collisions between, particles. Each of
the Ω microstates compatible with the given macrostate is observed with the same probability, 1/Ω.
The Ω1 microstates in which the gas is confined in the volume V1 are included in the Ω2 microstates in
which the gas is confined in the larger volume V2. Thus, after removal of the barrier, there is a finite,

but extremely small probability of P = Ω1
Ω2

=
(

V1
V2

)N
to find all gas particles in the initial volume V1.

This probability is so small that the expected waiting time for observing a return into the original
volume exceeds the lifetime of the universe by many orders of magnitude. If we do not want to wait
that long for the return to initial state, we have to push the gas back into the initial volume, which
requires work.

In generalization of the above, we can conclude that it is quite unlikely that a portion Vν of the

volume is void of particles. The corresponding probability is Pν =
(

V−Vν
V

)N
. The average volume

available for one particle is V̄ = V
N , and when Vν = νV̄ we find, for the large particle numbers in an

macroscopic amount of gas, Pν =
(
1− ν

N
)N ' e−ν. Thus, as long as Vν is bigger than the average

volume for a single particle, so that ν > 1, the probability for a void is very small. Moreover, strongly
inhomogeneous distributions are rather unlikely, since the number of homogeneous distributions is
far larger in number. Hence, we observe homogeneous distributions in equilibrium.

A closer look at equilibrium properties reveals small local fluctuations of properties, for example,
mass density, which are induced by the thermal motion of particles. The equilibrium state is stable,
that is these random disturbances decay in time, so that in average the equilibrium state is observed.
For macroscopic systems the fluctuations are so small that they can be ignored. Nevertheless,
fluctuations in density lead to light scattering, which can be used to determine transport coefficients
such as viscosity and heat conductivity from equilibrium states [20]. Since blue light is more likely to
be scattered in density fluctuations of the atmosphere, the sky appears blue.

51. Entropy and Disorder

Often it is said that entropy is a measure for disorder, where disorder has a higher entropy.
One has to be rather careful with this statement, since order, or disorder, are not well-defined concepts.
To shed some light on this, we use the following analogy—the ordered state of an office is the state
where all papers, folders, books and pens are in their designated shelf space. Thus, they are confined
to a relatively small initial volume of the shelf, V1. When work is done in the office, all these papers,
folders, books and pens are removed from their initial location, and, after they are used, are dropped
somewhere in the office—now they are only confined to the large volume of the office, V2. The actions
of the person working in the office constantly change the microstate of the office (the precise location
of that pen . . . where is it now?), in analogy to thermal motion.
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At the end of the day, the office looks like a mess and needs work to clean up. Note, however,
that the final state of the office—which appears to be so disorderly—is just one accessible microstate,
and therefore it has the same probability as the fully ordered state, where each book and folder is at
its designated place on the shelf. A single microstate, for example, a particular distribution of office
material over the office in the evening, has no entropy. Entropy is a macroscopic property that counts
the number of all possible microstates, for example, all possible distributions of office material.

A macroscopic state which puts strong restrictions on the elements has a low entropy, for example,
when all office material is in shelves behind locked doors. When the restrictions are removed—the
doors are unlocked—the number of possible distributions grows, and so does entropy. Thermal motion
leads to a constant change of the distribution within the inherent restrictions.

To our eye more restricted macroscopic states—all gas particles only in a small part of the container,
or all office material behind closed doors—appear more orderly, while less restricted states generally
appear more disorderly. Only in this sense one can say that entropy is a measure for disorder.

In the office, every evening the disordered state differs from that of the previous day. Over time,
one faces a multitude of disordered states, that is the disordered office has many realizations,
and a large entropy. In the end, this makes cleaning up cumbersome, and time consuming.

Our discussion focussed on spatial distributions where the notion of order is well-aligned with
our experience. The thermal contribution to entropy is related to the distribution of microscopic energy
em over the particles, where em is the microscopic energy per particle. In Statistical Thermodynamics
one finds that in equilibrium states the distribution of microscopic energies between particles is
exponential, A exp

[
− em

kT
]
. The factor A must be chosen such that the sum over all particles gives

the internal energy, U = ∑m Aem exp
[
− em

kBT

]
. One might say that the exponential itself is an orderly

function, so that the equilibrium states are less disordered than nonequilibrium states. Moreover,
for lower temperatures the exponential is more narrow, the microscopic particle energies are confined
to lower values, and one might say that low temperature equilibrium states are more orderly than
high temperature equilibrium states. And indeed, we find that entropy grows with temperature,
that is colder systems have lower entropies.

52. Summary

Looking back at the above, it is clear that we have not established any new thermodynamics,
but provided our perspective on entropy and the 2nd law. Throughout the discussion entropy is
established as a property for any state, be it in equilibrium and nonequilibrium. While this is standard
in all theories on nonequilibrium thermodynamics, and in kinetic theory of gases, one finds many
discussions of thermodynamics that define entropy only for equilibrium states. Restriction of entropy
to equilibrium state is an unnecessary assumption, that reduces applicability of thermodynamics,
but can easily be avoided.

Engineering applications of thermodynamics invariably have to account for inhomogeneous
nonequilibrium states, hence a clear description of entropy as nonequilibrium quantity is required,
and is, indeed, used.The global balance laws used in engineering textbooks follow from the assumption
of local thermodynamic equilibrium, which allows to use the equilibrium property relations locally.
The same assumption gives the Navier-Stokes-Fourier equations, that is, the partial differential
equations describing all local process details. Global and local descriptions are equivalent.

Entropy, and all other properties such as density, energy, and so forth, are also meaningful for
extreme nonequilibrium states, which are not in local equilibrium. The associated property relations
and transport equations might differ considerably from those based on the local equilibrium hypothesis,
but this does not imply that energy or entropy lose their meaning.

Positivity of thermodynamic temperature guarantees dissipation of work and kinetic energy.
This is best seen in the stability analysis, where motion of volume elements, that is, kinetic energy,
is included. In the frame where system momentum vanishes, the local velocity will vanish in
equilibrium, and this equilibrium resting state is stable only if thermodynamic temperature is positive.
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Entropy and the 2nd law were introduced based on five intuitive observations that are in
agreement with daily experience. There is no need of any discussion of thermodynamic cycles and
engines to introduce entropy and the 2nd law. This greatly simplifies access to the subject—both for
teaching and studying thermodynamics—since all thermodynamic cycles and engines are discussed
only after the laws of thermodynamics are established.

For teaching thermodynamics, I use a variant—with some shortcuts—of the approach developed
here [8]. This allows fast and meaningful access to the thermodynamic laws as early in the course as
possible, so that all applications can rely on 1st and 2nd law from the beginning.
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Appendix A. Caratheodory’s Approach

Our approach towards entropy and the 2nd law is based on the observation of phenomena.
Attempts for building thermodynamics axiomatically were presented by C. Caratheodory [9,19],
and more recently by Lieb and Yngvason [12,13].

Restricting his attention to adiabatic processes and equilibrium states only, Caratheodory
formulated the 2nd law in the statement that in each neighbourhood of an arbitrary initial state
there exist states that cannot be reached by adiabatic processes. While initial and end states are
equilibrium states, the processes that connect these states are allowed to be irreversible (work only).
This statement is, of course, compatible with the 2nd law (44), which for adiabatic processes reduces to
dS
dt = Ṡgen ≥ 0 —states with smaller entropy than the initial state cannot be reached adiabatically.

Using sophisticated reasoning within multivariable calculus, Caratheodory proceeds to find
the Gibbs equation where thermodynamic temperature is identified as a material independent
integrating factor.

Compared to our approach, entropy is defined only for equilibrium states and, since only adiabatic
processes are considered, heat—and therefore entropy flux as heat over temperature—does not appear
in the 1st and 2nd law. Therefore, the full entropy balance (44), which describes irreversible processes
with heat and work interaction, cannot be found within this framework.

Appendix B. Concavity of Equilibrium Entropy

We show that the stability conditions (120) are equivalent to the statement that equilibrium
entropy s (u, v) is a concave function of its arguments. The requirement for concavity is that the matrix

of second derivatives is negative definite. A symmetric matrix A =

{
a b
b c

}
is negative definite if

x · A · x < 0 for arbitrary vectors x = {x1, x2}. This is the case for a < 0, c− b2

a < 0, which implies
c < 0. Hence, concavity of s (u, v) is given for

(
∂2s

∂u∂u

)
v
< 0 ,

(
∂2s

∂u∂u

)
v
−

(
∂2s

∂v∂u

)2(
∂2s

∂v∂v

)
u

< 0 . (A1)
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The reformulation of these conditions into the stability conditions (120) is a beautiful application of
multi-variable calculus.

The first derivatives of entropy are obtained from the Gibbs equation Tds = du + pdv as(
∂s
∂u

)
v
=

1
T

,
(

∂s
∂v

)
u
=

p
T

. (A2)

From this we have, with the definition of specific heat (19),(
∂2s

∂u∂u

)
v
=

(
∂

∂u
1
T

)
v
= − 1

T2

(
∂T
∂u

)
v
= − 1

T2cv
< 0 , (A3)

To bring the other second derivatives into a compact form requires repeated use of the identity(
∂x
∂z

)
y
= −

(
∂x
∂y

)
z

(
∂y
∂z

)
x
. For the mixed derivative we find

∂2s
∂v∂u

=

∂
(

1
T

)
∂v


u

= − 1
T2

(
∂T
∂v

)
u
= − 1

T2

[
−
(

∂T
∂u

)
v

(
∂u
∂v

)
T

]
=

1
T2cv

(
∂u
∂v

)
T

. (A4)

For the second volume derivative we find at first(
∂2s

∂v∂v

)
u
=

(
∂
( p

T
)

∂v

)
u

= − p
T2

(
∂T
∂v

)
u
+

1
T

(
∂p
∂v

)
u
=

p
cvT2

(
∂u
∂v

)
T
− 1

T

(
∂p
∂u

)
v

(
∂u
∂v

)
p

. (A5)

For further simplification, we consider energy as a function of (T, v), with the differential du =

cvdT +
(

∂u
∂v

)
T

dv, from which we find the partial derivatives

(
∂u
∂v

)
p
= cv

(
∂T
∂v

)
p
+

(
∂u
∂v

)
T

,
(

∂u
∂p

)
v
=

1(
∂p
∂u

)
v

= cv

(
∂T
∂p

)
v

. (A6)

We use the above, and (54), to find(
∂2s

∂v∂v

)
u

=
1

T2cv

[
p− T

(
∂p
∂T

)
v

] (
∂u
∂v

)
T
− 1

T

(
∂T
∂v

)
p

(
∂p
∂T

)
v

= − 1
T2cv

(
∂u
∂v

)
T

(
∂u
∂v

)
T
+

1
T

(
∂p
∂v

)
T

,

so that (
∂2s

∂v∂v

)
u
−

(
∂2s

∂v∂u

)2(
∂2s

∂u∂u

)
v

=
1
T

(
∂p
∂v

)
T
= − 1

vTκT
< 0 .

Here, we have used the stability conditions (120), which state that T > 0, κT = − 1
v

(
∂v
∂p

)
T
> 0.

Hence concave equilibrium entropy s (u, v) follows from stability of the equilibrium state as expressed
in (120).

Appendix C. Local Formulation of Nonequilibrium Thermodynamics

Appendix C.1. Global and Local Balance Laws

In the body of the paper, we have discussed thermodynamics of systems, only occasionally
looking inside the systems, when states are inhomogeneous. For full resolution of what happens
inside a system, we need to formulate the conservation laws for mass, momentum and energy, and the
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non-conservation law for entropy, for each point in space, that is as partial differential equations.
For doing so, it is best to first discuss the general structure of balance laws in global and local form,
and then specify for the individual quantities to be balanced (mass, momentum, energy, entropy).

We consider a system of fixed volume V0. The outer surface of the system is denoted by ∂V0,
and ni denotes the normal vector on the boundary, pointing outwards. Following Reference [5], we use
index notation for vectors and tensors.

A global balance law considers the change in time of a global quantity

Ψ =
∫

V0

ρψdV , (A7)

where ψ is the mass specific property to the the global property Ψ.
The change in time dΨ/dt can be effected by: (a) a convective flux, that is the amount of Ψ that is

transferred in or out of the system when mass crosses the system boundary,

Ψ̇ = −
∮

∂V0

ρψVinidA ; (A8)

here, dA is a surface element of the boundary ∂V0 and −ρVinidA is the amount of mass crossing dA
during a time interval dt.

(b) a non-convective flux with local flux vector ϕi, so that the overall amount flowing over the
system boundary is

Φ̇ = −
∮

∂V0

ϕinidA ; (A9)

(c) a production Π inside the system with local production density π,

Π =
∫

V0

πdV ; (A10)

and (d) a supply Θ with local supply density ρθ to the bulk of the system

Θ =
∫

V0

ρθdV . (A11)

The difference between supply and production is that a supply can, at least in principle, be controlled
from the outside, while a production cannot be controlled, and is due to the processes inside the system.

Combining the above into the balance law gives

dΨ
dt

= Ψ̇ + Φ̇ + Π + Θ . (A12)

With the Gauss divergence theorem,
∮

∂V0
γinidA =

∫
V0

∂γk
∂rk

dV, the flux terms can be converted into
volume integrals, and since the system volume is fixed, the time derivative can be moved into the
integral, so that the balance assumes the form

∫
V0

(
∂ρψ

∂t
+

∂ (ρψVk + ϕk)

∂rk
− π − ρθ

)
dV = 0 .

The integral must vanish for arbitrary system volumes, hence the integrand must vanish as well.
As a result, we obtain the general form of a balance law in local formulation,

∂ρψ

∂t
+

∂ (ρψVk + ϕk)

∂rk
= π + ρθ . (A13)
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Appendix C.2. Local Conservation Laws

For the balance of mass, we have ψ = 1. Mass is conserved (π = 0), and can only be transferred by
convection, that is there is neither a non-convective flux (ϕk = 0), nor a supply (θ = 0). Hence, the local
mass balance reads

∂ρ

∂t
+

∂

∂rk
[ρVk] = 0 . (A14)

For momentum, we have ψ = Vi. Momentum is conserved (π = 0), it can be transferred to
the system by convection, and by forces ϕk = −tikni acting on the system boundary; body forces Gi,
such as gravity, serve as a supply (θ = Gi):

∂ [ρVi]

∂t
+

∂

∂rk
[ρViVk − tik] = ρGi . (A15)

Here, tij is the symmetric stress tensor defined such that tikni is the force on a fluid surface element
with normal vector ni; in equilibrium the stress tensor reduces to the pressure, tik|Eq = −pδik.

For energy, we have ψ = u + 1
2V2. Also energy is conserved (π = 0). It can be transferred to the

system by convection, by non-convective heat flux qk, and by the power of the surface forces −tiknkVi;
the supply is due to the power ρGiVi of body forces. Hence the energy balance reads

∂

∂t

[
ρ

(
u +

1
2
V2
)]

+
∂

∂rk

[
ρ

(
u +

1
2
V2
)
Vk + qk − tikVi

]
= ρGiVi . (A16)

The above Equations (A14)–(A16) are valid for any fluid or gas. Integrating the mass balance (A14)
and the energy balance (A16) over the (time dependent) system volume V results in the system
conservation laws (122) and (126), with the mass flow over an open section A (i.e., an inflow or
outflow) of the boundary as

ṁ =
∫

A
ρ |Vknk| dA , (A17)

and total heat and work given by

Q̇ = −
∮

∂V
qinidA , Ẇ = −

∫
∂V,solid

tikVknidA ; (A18)

here, ∂V is the boundary of the system, and (∂V, solid) is the solid part of the system boundary, where
no mass can cross. The derivation requires some assumptions, including that properties at in/outflows
can be replaced by averages, and that the body force has a time-independent potential, Gi = −

∂(gnz)
∂ri

.
In the form given above, the conservation laws (A14)–(A16) do not form a closed system of

equations for the variables (ρ,Vi, T), since they contain internal energy u, heat flux qi and stress
tensor tij, which must be related to the variables by means of constitutive relations—this will be
discussed in the next section.

For the constitutive theory based on the assumption of local thermodynamic equilibrium, it is
most convenient to rewrite the conservation laws with the material time derivative D

Dt =
∂
∂t + Vk

∂
∂rk

.
After some manipulation, including use of mass balance to simplify momentum and energy balance,
and momentum balance (after scalar product with Vi) to simplify the energy balance, the result can be
written as

Dρ

Dt
+ ρ

∂Vk
∂rk

= 0 ,

ρ
DVi
Dt
− ∂tik

∂rk
= ρGi , (A19)

ρ
Du
Dt

+
∂qk
∂rk

= −tik
∂Vi
∂xk

.
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The last equation is the balance of internal energy, which is not a conservation law, due to the term on
the right which describes production of internal energy due to frictional heating.

Appendix C.3. Linear Irreversible Thermodynamics

The question of finding constitutive equations for u, qi, tij, and entropy s, and the construction of
the entropy balance, is the main question in Nonequilibrium Thermodynamics. For strong nonequilibrium,
this is a rather difficult topic, with many competing, or complimentary, ideas. The approach for the case
of local thermodynamic equilibrium, however, is now well established as Linear Irreversible Thermodynamics
(LIT) [18].

The basic idea is to assume that the property relations for equilibrium are valid locally, for any
element of the fluid, that is we have the thermal and caloric equations of state, p (T, ρ) , u (T, ρ) and
the Gibbs equation, Tds = du− p

ρ2 dρ valid in a volume element dV located at~r.
For the construction of the local balance law for entropy—the 2nd law—we recall that the Gibbs

equation was derived for a closed system, that is, it is valid for a material element. Therefore its
material time derivative assumes the form

T
Ds
Dt

=
Du
Dt
− p

ρ2
Dρ

Dt
, (A20)

which is the base for the construction of the entropy balance. Replacing the time derivatives of ρ, u by
means of the conservation laws, multiplying with ρ

T , and an integration by parts, yields

ρ
Ds
Dt

+
∂

∂rk

[ qk
T

]
= σ , (A21)

with

σ = qk
∂ 1

T
∂rk

+
1
T

t〈ik〉
∂V〈i
∂rk〉

+
1
T

(
p +

1
3

trr

)
∂Vk
∂rk

. (A22)

Here, t〈ik〉 denotes the trace free and symmetric part of the stress tensor, and trr is its trace.
Equation (A21) is the local balance of entropy with the non-convective entropy flux φk = qk

T ,
and the entropy production density σ. Integration over the system volume yields the system
balance (69) that was derived under the assumption of local thermal equilibrium, with the overall
entropy generation rate Ṡgen =

∫
V0

σdV.
The requirement of non-negative entropy generation, Ṡgen ≥ 0, for all choices of the system

volume V0 implies non-negative values for the production density, that is, σ ≥ 0. This is a strong
condition on the constitutive equations for qi, tik. We recognize σ in (A22) as the product of the
thermodynamic fluxes FA =

{
qi, t〈ik〉,

(
p + 1

3 trr

)}
and thermodynamic driving forces, viz. the space

derivatives of velocity Vi and temperature T. Note that the forces describe deviations from equilibrium
states, which have homogeneous temperature and velocity.

LIT assumes a linear relationship between fluxes and forces, such that corresponding forces
and fluxes have the same tensorial degree (Curie principle) [18]. The result is the stress tensor of the
Navier-Stokes equations, and Fourier’s law for the heat flux,(

p +
1
3

trr

)
= ν

∂Vk
∂rk

, t〈ik〉 = 2µ
∂V〈i
∂rk〉

, qi = −κ
∂T
∂ri

. (A23)

Here, ν > 0 is the bulk viscosity, µ > 0 is the shear viscosity, and κ > 0 is the heat conductivity;
all three must be measured as functions of (ρ, T). The signs ensure that the entropy generation is
always positive. Note that the viscosities must be positive since thermodynamic temperature is
positive—once more we see that positive temperature guarantees mechanical stability.
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The entropy generation rate becomes

σ =
κ

T2
∂T
∂ri

∂T
∂rk

+
2µ

T
∂V〈i
∂rk〉

∂V〈i
∂rk〉

+
ν

T
∂Vj

∂rj

∂Vk
∂rk
≥ 0 . (A24)

In summary, LIT derives the Navier-Stokes-Fourier equations that are routinely used in
thermodynamics, fluid mechanics, and heat transfer. Moreover, LIT provides the expression for
the local entropy balance, which opens the door to full analysis of thermodynamic losses—recall that
Ẇloss = T0Ṡgen = T0

∫
σdV.

The entropy generation rate (A24) is quadratic in gradients of temperature and velocity.
This indicates that processes with small gradients have very small entropy generation, with the
limit of reversible processes for vanishing gradients.

Appendix C.4. Jump and Slip at Boundaries

It is a common assumption that a fluid at a wall assumes the temperature and velocity of the
wall. To re-examine boundary conditions for fluids, we consider a wall-fluid boundary with a normal
vector nk, pointing from the wall into the fluid. For this section properties of the wall are denoted with
a superscript W, while properties with a superscript F denote fluid properties directly at the wall.

The wall does not allow fluid to pass, hence the normal velocity of the fluid relative to the
wall vanishes, (

VF
k − V

W
k

)
nk = 0 . (A25)

Since momentum and energy are conserved, their non-convective fluxes must be continuous, that is

− tF
iknk = −tW

ik nk , qF
k nk − tF

ikV
F
i nk = qW

k nk − tW
ik V

W
i nk . (A26)

It must be expected that the interaction of fluid and wall is irreversible, so that the entropy flux into
the fluid is larger than the flux out of the wall. With the surface entropy production σ̄ ≥ 0, we write

qF
k nk

TF =
qW

k nk

TW + σ̄ . (A27)

To obtain boundary conditions for the fluid, we eliminate the stress and heat flux in the wall from the
conservation conditions, to find

σ̄ =
qF

k nk

TF −
qW

k nk

TW =

(
1

TF −
1

TW

)
qF

k nk +
(
VF

i − VW
i

) tF
iknk − nitF

jknjnk

TW ≥ 0 . (A28)

Again we require non-negative production at all states, and, employing the LIT constitutive expressions,
find expressions for the temperature jump and the velocity slip,

TF − TW = λT
∂T
∂rk

nk , VF
i − VW

i = λV

(
∂V〈i
∂rk〉
−

∂V〈j
∂rk〉

ninj

)
nk . (A29)

Here, λT > 0 and λV > 0 are the jump and slip length, respectively, which must be obtained
from experiments.

For most engineering applications, λT and λV are so small that they can be set to zero, which yields
the common boundary conditions that the fluid sticks to the wall, and has its boundary temperature,
VF

i = VW
i , TF = TW . The above derivation shows, however, that jump and slip are the natural

expectation, since they imply irreversibility at the wall. In particular for rarefied gases, jump and slip
might be marked effects [17]. Note that in nonequilibrium systems temperature jumps are expected at
thermometer boundaries, so that a thermometer might not show the actual temperature of the fluid.
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Appendix D. Elements of Kinetic Theory of Gases

Much on entropy and the 2nd law can be learned from the kinetic theory of monatomic gases,
which we briefly discuss in this Appendix. Kinetic Theory is a fascinating and deep subject, and it
should be clear that we can at best give a flavor of its most salient results. For deeper insight, we must
refer the reader to the literature, for example, References [15–17].

Appendix D.1. Microscopic Description of a Gas

A gas consists of a huge number—in the order of 1023—interacting particles α whose physical
state is described by their locations xα =

{
xα

1 , xα
2 , xα

3
}

and their velocities cα =
{

cα
1 , cα

2 , cα
3
}

at any time
t. The (micro-) state of the gas is given by the complete set of the {xα, cα}, and each particle can be
described through its trajectory in the 6-dimensional phase space spanned by x and c.

Thus, to describe the gas one could establish the equation of motion for each particle, and then
had to solve a set of ∼ 1023 coupled equations. Clearly this is not feasible, and therefore kinetic theory
chooses to describe the state of the gas on the micro-level through the phase density, or distribution
function, f (x, t, c) which is defined such that Nx,c = f (x, t, c) dxdc gives the number of particles that
occupy a cell of phase space dxdc at time t. In other words, Nx,c is the number of particles with
velocities in {c, c + dc} located in the interval {x, x + dx} at time t.

With this definition, a certain level of inaccuracy is introduced, since now the state of each particle
is only known within an error of dxdc. The phase density f (x, t, c) is the central quantity in kinetic
theory, since the state of the gas is (almost) completely known when f is known.

We consider particles of mass m. When we integrate m f over velocity, we obtain the mass density
ρ. We frequently have to integrate over the full velocity space, and in order to condense notation we
write one integral sign without limits,

ρ = m
∫∫∫ ∞

−∞
f dc = m

∫
f dc . (A30)

The momentum density of the gas is obtained by averaging particle momentum,

ρVi = m
∫

ci f dc . (A31)

The peculiar velocity Ci = ci − Vi of the particles gives the particle speed as measured by an
observer moving with the gas at the local velocity Vi, that is, an observer in the rest-frame, hence the
first moment of f over Ci vanishes,

0 = m
∫

Ci f dc . (A32)

The kinetic energy of a particle is given by m
2 c2, so that the energy density of the gas is given by

(e denotes the specific energy)

ρe =
m
2

∫
c2 f dc =

m
2

∫ (
C2 + 2VkCk + V2

)
f dc = ρu +

ρ

2
V2 , (A33)

where
ρu =

m
2

∫
C2 f dc (A34)

is the internal, or thermal, energy of the gas, and ρ
2V2 is the kinetic energy of its macroscopic motion.

Thus, the internal energy of an ideal monatomic gas is the kinetic energy of its particles as measured in
the rest-frame.

Pressure tensor pij and heat flux qi are the fluxes of momentum and energy,

pij = −tij = m
∫

CiCj f dc and qi =
m
2

∫
C2Ci f dc . (A35)
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Note that the stress tensor of fluid dynamics is just the negative pressure tensor. Pressure is the trace
of the pressure tensor,

p =
1
3

pkk =
1
3

m
∫

C2 f dc =
2
3

ρu , (A36)

From the ideal gas law p = ρRT follows the relation between energy and temperature as

u =
3
2

RT , or T =
1
3

m
ρR

∫
C2 f dc . (A37)

Temperature in kinetic theory is usually defined by the above relation for all situations, including
strong deviations from equilibrium.

The atoms in a monatomic gas have three translational degrees of freedom (the three components
of velocity), and each degree of freedom contributes 1

2 RT to the specific internal energy, or 1
2 R to the

specific heat cv =
(

∂u
∂T

)
ρ
.

Appendix D.2. Equilibrium and the Maxwellian Distribution

A simple argument going back to Maxwell allows us to find the velocity distribution in
equilibrium. Equilibrium is a state where no changes will occur when the gas is left to itself, and this
will imply that the gas is homogeneous, that is, displays no gradients in any quantity (external forces
such as gravity are ignored), and the phase density is isotropic, that is independent of the direction
νi = Ci/C. The following argument considers the gas in the rest-frame, where Vi = 0.

An arbitrary atom picked from the gas will have the velocity components Ck, k = 1, 2, 3, and the
probability to find the component in direction rk within the interval [Ck, Ck + dCk] is given by
Π (Ck) dCk. Note that, due to isotropy, the probability function Π is the same for all components.
Then, the probability to find a particle with the velocity vector {C1, C2, C3} is given by

F (C) dC1dC2dC3 = Π (C1)Π (C2)Π (C3) dC1dC2dC3 (A38)

where F (C) = f (C) / (ρ/m) depends only on the absolute value of velocity, C, since the probability
must be independent of direction. Thus, F and Π are related as

F (C) = Π (C1)Π (C2)Π (C3) . (A39)

Taking the logarithmic derivative of this equation with respect to C1 we see

∂

∂C1
ln F (C) =

∂

∂C1
[ln Π (C1) + ln Π (C2) + ln Π (C3)] (A40)

or
1
C

F′ (C)
F (C)

=
1

C1

Π′ (C1)

Π (C1)
= −2γ . (A41)

Since the left and the right side of this equation depend on different variables, γ must be a constant,
and integration gives an isotropic Gaussian distribution,

F =
f
n
= A exp

[
−γC2

]
and Π (Ck) =

3√A exp
[
−γC2

k

]
, (A42)

where A is a constant of integration. The two constants γ and A follow from the conditions that the
phase density must reproduce mass and energy density, that is

ρ = m
∫

f dc and ρu =
3
2

ρRT =
m
2

∫
C2 f dc . (A43)
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The resulting equilibrium phase density is the Maxwellian distribution

fM =
ρ

m
1

√
2πRT

3 exp
[
− C2

2RT

]
. (A44)

Appendix D.3. Kinetic Equation and Conservation Laws

The evolution of the phase density f in space time is given by the Boltzmann equation,
which describes the change of f due to free flight, external forces Gk, and binary collisions between
particles. Instead of discussing the full Boltzmann equation, we consider a kinetic model equation,
known as the BGK model, where the Boltzmann collision term is replaced by a relaxation term,

∂ f
∂t

+ ck
∂ f
∂rk

+ Gk
∂ f
∂ck

= − 1
τ
( f − fM) . (A45)

Here, τ is the mean free time, that is, the average time a particle travels freely between two collisions
with other particles, and fM is the local Maxwell distribution. The right hand side describe the change of
the distribution due to collisions, which move the distribution function closer towards the Maxwellian.
If the collision frequency 1/τ is relatively large, than we expect that the local state is close to the
Maxwellian at all times, which implies local equilibrium. The discussion further below will give more
details on this particular limit.

While not exact, the BGK model shares the main features of the Boltzmann equation, and is used
in the present brief sketch because of its simplicity.

To simplify notation, we write moment of the phase density as

ρ 〈ψ〉 = m
∫

ψ f dc , (A46)

where ψ is any function of (r, t, c), so that, for example, ρ = ρ 〈1〉, ρvi = ρ 〈ci〉, ρe = ρ
2
〈
c2〉, and so

forth. The evolution equation for 〈ψ〉, the equation of transfer, is obtained by multiplying (A45) with
ψ (r, t, c), and subsequent integration,

∂ρ 〈ψ〉
∂t

+
∂ρ 〈ψck〉

∂rk
= ρ

〈
∂ψ

∂t

〉
+ ρ

〈
ck

∂ψ

∂rk

〉
+ ρ

〈
Gk

∂ψ

∂ck

〉
+ Sψ . (A47)

The production term Sψ is defined as

Sψ = − 1
τ

∫
ψ ( f − fM) dc , (A48)

with no productions for the conserved quantities mass, momentum and energy,

S1 = Sci = Sc2 = 0 , (A49)

that is the Boltzmann equation, and the BGK model, guarantee conservation of mass, momentum,
and energy.

For ψ =
{

1, ci, 1
2 c2
}

, (A47) and the above definitions of macroscopic properties imply the
conservation laws for mass, momentum and energy (A14)–(A16).

Appendix D.4. Entropy and 2nd Law in Kinetic Theory

In the equation of transfer (A47) we chose, following Boltzmann [15–17],

ψ = −kB ln
f
y

(A50)
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with the Boltzmann constant kB and another constant y. We introduce

η = −kB

∫
f ln

f
y

dc , Φκ = −kB

∫
ck f ln

f
y

dc (A51)

and
Σ = S−kB ln f

y
=

kB
τ

∫
ln

f
y
( f − fM) dc =

kB
τ

∫
ln

f
fM

( f − fM) dc , (A52)

so that the corresponding transport equation for η reads

∂η

∂t
+

∂Φk
∂rk

= Σ . (A53)

Closer examination shows that the collision term (A52) cannot be negative, and Σ vanishes in
equilibrium, so that

Σ ≥ 0 . (A54)

This feature of the BGK model reproduces the behavior of the full Biolzmann collision term.
Thus, η always has a positive production which vanishes in equilibrium. Accordingly, η can only grow
in an isolated system, where no flux over the surface is allowed (

∮
∂V ΦknkdA = 0), and reaches its

maximum in equilibrium, where Σ = 0. This property of η and in particular the definite sign of Σ are
known as the H-theorem.

In our view, the H-theorem is equivalent to the second law of thermodynamics, the entropy law,
which was introduced above on purely phenomenological grounds. Then, η is the entropy density of
the gas, and we write

η = ρs , (A55)

where s denotes the specific entropy. Φκ as given in (A51)2 is the entropy flux, and the non-convective
entropy flux φk = Φk − ρsvk can be computed according to

φκ = −kB

∫
Ck f ln

f
y

dc . (A56)

This gives the second law in the form

ρ
Ds
Dt

+
∂φk
∂xk

= Σ ≥ 0 ; (A57)

Σ is the entropy production (entropy generation rate).
The specific entropy of the monatomic gas in equilibrium follows by evaluating (A51)1 with the

Maxwellian (A44) as

s = R ln
T3/2

ρ
+ s0 where s0 = R

[
3
2
+ ln

(
mR3/2y

√
2π

3)]
. (A58)

This result stands in agreement with classical thermodynamics.
Phase density and Boltzmann equation are valid for arbitrary nonequilibrium states, hence the

above expressions for entropy, entropy flux, and entropy generation, and the balance law (A57) hold
for arbitrary nonequilibrium states. There is no restriction of Boltzmann entropy to equilibrium states!

The Boltzmann equation is constructed such that entropy η has a strictly non-negative production
rate Σ ≥ 0. This is not in agreement with the behavior of microscopic mechanical systems.
The instantaneous reversal of the microscopic velocities of all particles should send the gas back
to its initial state, which would imply destruction of entropy (Loschmidt’s reversibility paradox).
Also, any mechanical system will, after some time, return to (microscopic) states arbitrarily close to its
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initial state, with an entropy close to that of the initial state, which also implies destruction of entropy
(Zermelo’s recurrence paradox).

The reversibility paradox is resolved by observing that the overwhelming majority of possible
microscopic initial conditions (for the same macroscopic state) will result in processes with
non-negative entropy generation. Microscopic states that result from sudden inversion of all particle
velocities belong to the comparatively rather small number of possible initial conditions that lead to
entropy destruction. Indeed, the relative number of such initial conditions must be so small that these
can be ignored—after all, observation of macroscopic processes shows non-negative entropy generation.
Also, it must be noted that it is impossible to realize the sudden reversal of all microscopic velocities.

The recurrence paradox is resolved by observing that the recurrence time is so long (much longer
than the lifetime of the universe for systems with many particles) that entropy destruction would not
be observed during our lifetimes.

In summary, we can state that the Boltzmann equation describes the probable behavior of gases,
with non-negative generation of entropy. For a deeper discussion of these points we must refer the
reader to References [1,15–17].

Appendix D.5. Kinetic Theory in the Continuum Limit

To align the idea of local thermodynamic equilibrium with kinetic theory, we use the
Chapman-Enskog method to determine an approximate phase density from the kinetic equation.
The approach presented is justified for flows where the Knudsen number is sufficiently small [16,17].
The Knudsen number is defined as the ratio of average mean free path λ = τ

√
RT of the gas and the

relevant length scale of a process, as Kn = τ
√

RT0
L , where we use

√
RT0 with a meaningful reference

temperature T0 as a measure of average particle speed in the restframe.
In dimensionless form, with scales based on L, T0, the BGK collison term appears as 1

Kn ( f − fM),
and evaluation of the Boltzmann equation can be performed in the limit of small Knudsen numbers.
Instead, one can work with the dimensional equation, and introduce a formal scaling parameter ε that
plays the role of the Knudsen number in taking limits. The parameter will be set to unity at the end of
the scaling procedure. Hence, we write the kinetic equation with the convective time derivative as

D f
Dt

+ Ck
∂ f
∂rk

+ Gk
∂ f
∂ck

= −1
ε

1
τ
( f − fM) . (A59)

The idea of the Chapman-Enskog expansion is to write f as a series in ε (or, in the Knudsen number
Kn, if the dimensionless equation is used),

f = f (0) + ε f (1) + ε2 f (2) + · · · (A60)

The expansion terms f (α) are determined from inserting the series into the Boltzmann equation,
and evaluation of the contributions at the different powers of ε. Here, we are only interested in the first
two contributions. Inserting the ansatz into (A59), and equating terms of equal powers in ε−1 and ε0

yields at first

0 = − 1
τ

(
f (0) − fM

)
,

D f (0)

Dt
+ Ck

∂ f (0)

∂rk
+ Gk

∂ f (0)

∂ck
= − 1

τ
f (1) . (A61)

Hence, the leading order term is the local Maxwellian, f (0) = fM, and the first order correction f (1)

is determined from the Maxwellian. Using the conservation laws for eliminating the ensuing time
derivatives, one finds

f (1) = − fMτ

[
C〈kCl〉

θ

∂v〈k
∂rl〉

+ Ck

(
C2

2θ
− 5

2

)
1
θ

∂θ

∂rk

]
. (A62)
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When the first order approximation of the distribution function, f (0) + ε f (1), is inserted into (A35)
to determine stress tensor and heat flux to first order, one finds just the laws of Navier-Stokes
and Fourier,

t(1)ij = −pδij + 2pτ
∂v〈i
∂rk〉

and q(1)i = −5
2

pτ
∂θ

∂ri
, (A63)

where viscosity and thermal conductivity for the BGK model are identified as

µ = pτ and κ =
5
2

pτ . (A64)

We note that the BGK model gives an incorrect Prandtl number, Pr = 5
2

µ
κ = 1, while the full Boltzmann

equation yields the proper value of Pr ' 2
3 . Moreover, the monatomic gas has no bulk viscosity.

According to the CE expansion, the first order solution for the phase density can be written as

f = fM (1 + εϕ) , (A65)

and the corresponding expressions for entropy and its flux follow from first order expansion of the
logarithm, ln (1 + εϕ) ' εϕ. For the entropy we obtain to first order in ε

ρs = −k
∫

fM (1 + εϕ)

(
ln

fM
y

+ εϕ

)
dc = −k

∫
fM ln

fM
y

dc . (A66)

Since the first order contributions vanish, this is just the entropy in equilibrium (24). We conclude
that to first order in ε the gas can be described locally as if it were in equilibrium. This result gives
justification to the hypothesis of local thermodynamic equilibrium.

The corresponding first order entropy flux is obtained as

φκ = −k
∫

Ck fMεϕ

(
ln

fM
y

+ 1
)

dc . (A67)

Since ln fM + 1 = −C2/2θ + F (ρ, T), and
∫

Ck fM ϕdc = 0, we obtain, again after setting the formal
parameter ε = 1, an approximation for the entropy flux to first order in ε,

φκ =
1
T

m
2

∫
CkC2 fM ϕdc =

qk
T

. (A68)

Also this relation between heat flux and entropy flux is well-known in classical thermodynamics.
The corresponding entropy generation rate Σ is the same as in LIT, given in (A24).

Appendix D.6. Entropy as S = k ln Ω

Boltzmann’s choice (A50) allows to relate entropy to microscopic properties, and to interpret
entropy as a measure for disorder [5,17].

We consider a gas of N particles in the volume V, and compute its total entropy as

H =
∫

V
ηdr = −k

∫
V

∫
f ln

f
y

dcdr . (A69)

The number of particles in a phase cell is

Nr,c = f drdc = f Y , (A70)
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where Y = drdc is the size of the cell. By writing sums over phase cells instead of integrals, and with
N = ∑r,c Nr,c follows

H = −k ∑
r,c

Nr,c ln
Nr,c

yY
= −k ∑

r,c
Nr,c ln Nr,c + kN ln yY . (A71)

Use of Stirling’s formula, ln N! = N ln N − N, yields

H = −k ∑
r,c

(ln Nr,c! + Nr,c) + kN ln yY = k ln
N!

∏r,c Nr,c!
+ kN ln

yY
N

. (A72)

Choosing y = N/Y finally allows to write

H = k ln Ω (A73)

where
Ω =

N!
∏r,c Nr,c!

(A74)

is the number of possibilities to distribute N particles into the cells of phase space, so that the cell at
(r, c) contains Nr,c particles.

Equation (A73) relates the total gas entropy H to the number of possibilities to realize the state of
the gas. The growth of entropy, which is imperative in an isolated system, therefore corresponds to
an increasing number of possibilities to realize the state. Since a small number of possibilities refers to
an ordered state, and a large number to disorder, we can say that the H-theorem states that disorder
must grow in an isolated process. Accordingly, entropy is often interpreted as a measure for disorder.

The relation (A73) is generally accepted as being valid not only for monatomic ideal gases—where
it originated—but for any substance. However, the evaluation for other substances can be quite difficult,
or impossible, since it requires a detailed understanding of the microscopic details of phase space,
accessible states, and so forth, in order to determine Ω properly.

Finally we note that we used the symbols η, H to denote Boltzmann entropies, but that we consider
these to be the actual entropies of the gas, that is η = ρs, H =

∫
ηdV =

∫
ρsdV = S.
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